Suche

Anzahl der Suchergebnisse: 5050

unspezifisch unspezifisch unspezifisch

Handlungsfeld: Gesunde und sichere Nahrungsmittel produzieren

Gesunde Ernährung ist für ein gesundes Leben unerlässlich. Mit dem Schwerpunkt "gesunde und sichere Lebensmittel produzieren" fördert das BMBF die Entwicklung verbraucherorientierter Produkt- und Prozessinnovationen für gesunde, qualitativ hochwertige, preiswerte und sichere Lebensmittel.

unspezifisch unspezifisch unspezifisch

Handlungsfeld: Nachwachsende Rohstoffe industriell nutzen

Bio-basierte Produkte, zu deren Herstellung biotechnische, chemische, thermische oder mechanische Verfahren kombiniert werden, können nicht nur Natur, Umwelt und Klima schonen, sondern schaffen auch mehr Unabhängigkeit von fossilen Rohstoffen. Sie leisten einen entscheidenden Beitrag für den Strukturwandel von einer erdöl- zu einer bio-basierten Industrie mit Chancen für Wachstum und Beschäftigung. Die industrielle Biotechnologie ist dabei ein wichtiger Impulsgeber.

unspezifisch unspezifisch unspezifisch

Handlungsfeld: Internationale Kooperationen

Globales Wissen nutzen - Bioökonomie stärken. Mit einer verstärkten Internationalisierung von Wissenschaft und Forschung will die Bundesregierung die Wettbewerbsfähigkeit des Bioökonomiestandortes Deutschland ausbauen und gleichzeitig mehr Verantwortung für die globalen Herausforderungen Welternährung, Klima- und Umweltschutz übernehmen.

Palmöl-Früchte
Palmöl-Früchte sind heiß begehrt. Doch der Anbau belastet zunehmend die Umwelt.

Pharma Pflanzen Lebensmitteltechnologie

WWF-Studie zu Palmöl vorgelegt

Der weltweit steigende Bedarf an Palmöl und der wachsende Anbau belasten die Umwelt. Doch eine überzeugende Alternative gibt es nicht, folgert die Umweltorganisation WWF in einer Studie.

Konsumgüter Pflanzen Biodiversität

WWF (2016): Auf der Ölspur – Berechnungen zu einer palmölfreieren Welt

Ein kompletter Verzicht auf Palmöl ist keine Lösung, eine bewusste und reduzierte Nutzung des Pflanzenöls schon!

Enzyme
Für die Synthese der Poly-N-Acetyllactosamin (Poly-LacNAc) Glykanstruktur wirken mehrere Enzyme zusammen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Der künstliche Golgi-Apparat

Glykane sind Zuckerketten. Sie gelten als Zielstrukturen der Zukunft in der Biomedizin. Wissenschaftler erforschen, wie sich die auf der Zelloberfläche vorkommenden Glykane nutzen lassen, um das Immunsystem zu modulieren. Auf diese Weise könnten wirksame Krebsmedikamente oder schützende Impfstoffe entstehen. Das Team von Lothar Elling vom Institut für Biotechnologie der RWTH Aachen  und Helmholtz-Institut für Biomedizinische Technik hat sich nun zum Ziel gesetzt, die Synthese der Glykan-Moleküle zu vereinfachen. Dazu will  das Team die Zuckerketten-Produktion im Labor nach dem Vorbild des Golgi-Apparats in Zellen nachbauen. Das explorativen Projekt nennt sich deshalb „Die Golgi-Glykan-Fabrik“ (GGF).

Technik der Durchflusszytometrie
Mit der Technik der Durchflusszytometrie lassen sich Enzymvarianten aus einer riesigen Bibliothek durchmustern.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Proteinevolution im Zeitraffer

Um Eiweißmoleküle mit neuen  Eigenschaften zu entwickeln, setzen Biotechnologen auf die sogenannte gelenkte  Evolution. Doch wie lassen sich riesige Bibliotheken mit Enzymvarianten schneller nach interessanten Molekülen durchmustern? Ein Team um Ulrich Schwaneberg von der RWTH Aachen arbeitet an einem Verfahren, mit der sich die Suche beschleunigen lässt. Ziel des explorativen Projekts mit dem Titel „Zellfreie durchflusszytometrie-basierte in vitro Vesikel-Durchmusterungstechnologie für eine gelenkte Evolutionsrunde pro Tag“: In 24 Stunden eine Evolutionsrunde abschließen und die daraus hervorgegangene Enzyme vollständig durchmustern.

Luftballonstrauß
Wie in diesem Strauß von Luftballons ist das molekulare Gedränge in der Zelle groß.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Biochemische Reaktionen in 3D simulieren

Biochemische Prozesse sind äußerst komplex. Ein bisher noch wenig betrachteter Aspekt dieser Komplexität: biochemische Prozesse laufen in der Zelle in einem dreidimensionalen Raum ab und Moleküle selbst haben eine räumliche Gestalt. Der Jülicher Forscher Eric von Lieres möchte biochemische Prozesse in 3D auf modernen Computerarchitekturen simulieren. Die entwickelten Simulationsmodelle sollen dabei helfen, biotechnische Reaktionssysteme zu optimieren.

Bio- und Chemokatalyse
Auf eine enge Liäson von chemischer Synthese und Biokatalyse haben es Forscher aus Bielefeld und Düsseldorf abgesehen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Bio- und Chemokatalyse unter einem Dach

In der Biotechnologie sind Enzyme als Biokatalysatoren im Einsatz, die Synthese-Chemie wiederum setzt oftmals auf Chemokatalysatoren.  Doch bisher gibt es kaum Fälle, in denen chemo- und biokatalytische Reaktionen erfolgreich kombiniert wurden. Diese enge Verzahnung der beiden „Katalyse-Welten“ hat sich ein Forschertandem um den Bielefelder Chemiker Harald Gröger und den Enzymtechnologen Werner Hummel von der Universität Düsseldorf vorgenommen. Das Forschertandem will das Konzept der chemoenzymatischen Mehrstufen-Eintopfsynthesen vorantreiben, um damit Spezial- oder Feinchemikalien herzustellen.

Nanoporen im Hydrogel
Hydrogele haben interessante Eigenschaften, die sich für die biotechnologische Stofftrennung nutzen lassen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Funktionalisierte Nanoporen für die Stofftrennung

Stofftrennung ist ein wichtiger Arbeitsschritt in der biotechnologischen Praxis. Doch die konventionellen Methoden sind oft aufwändig, kostenintensiv und schlecht skalierbar. Der Forscher Thomas Burg vom Max-Planck-Institut für biophysikalische Chemie in Göttingen will mit Hilfe neuer Nanofabrikationsmethoden sogenannte biologische Hydrogele zur Lösung dieses Problems nutzbar machen. Hydrogele wirken in Zellen und Geweben oft als hochselektive Barrieren, welche einen kontrollierten Transport von Molekülen ermöglichen. Burg möchte solche Gele in sehr dünne nanoporöse Feststoffmembranen integrieren. Dazu entwickelt er eine Mikrofluidikplattform, mit der sich die Funktionsweise der Gele untersuchen und künftig einmal Stoffgemische in zellfreien Produktionssystemen aufreinigen lassen.

Enzyme in Kapseln
Enzyme in Kapseln packen und so für die Arbeit in organischen Lösungsmitteln rüsten. Das ist das Ziel bei Enzcaps

unspezifisch unspezifisch Biotechnologie/Systembiologie

Enzcaps: Enzymkapseln in organischen Lösungsmitteln

Robin Ghosh will Enzyme einsperren: „Im Inneren von Mikrokapseln sollen sie aus einem Ausgangsprodukt in mehreren Schritten das gewünschte Endprodukt herstellen.“ Das Besondere an dem von Ghosh koordinierten Verbundprojekt „EnzCaps“ ist die Umgebung, in der die Reaktionen stattfinden sollen: organische Lösungsmittel. Das württembergische Team will so das Anwendungsspektrum der enzymatischen Biotechnologie erweitern. Viele wichtige Ausgangs- und Endprodukte sind nicht in wässriger Umgebung löslich. Enzymreaktionen in organischen Lösungsmitteln sollen hier einen Ausweg bieten. Doch bis es soweit ist, müssen zunächst einmal Enzyme entwickelt werden, die auch in der für sie ungewohnten Umgebung zufriedenstellend arbeiten.

Monolithen
Monolithen sind Trägermaterialien mit einer porösen Struktur.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Bioliths: Neue Enzym-Bioreaktoren für ionische Flüssigkeiten

In der Bioanalytik werden – etwa in Trenn- und Affinitätssäulen –  meist dichtgepackte Kügelchen eingesetzt. Ein anderes Konzept stellen die Monolithen dar, das sind homogene polymere Matrix-Strukturen, die von winzigen Poren durchsetzt sind. Ein Verbundprojekt namens „Bioliths“ um den Stuttgarter Polymerchemiker Michael Buchmeiser und den Biotechnologen Bernhard Hauer möchte ein innovatives monolithisches Trägermaterial entwickeln, das sich einmal als Reaktor für bestimmte Enzyme eignen soll. Hierbei sollen die Enzyme jedoch nicht in wässriger Umgebung arbeiten, sondern in ionischen Flüssigkeiten. Davon versprechen sich nicht nur die Forscher aus Stuttgart viel Potenzial für neue Produkte. Auch das Geesthachter Bioanalytik-Unternehmen GALAB Laboratories GmbH ist an dem Projekt beteiligt.

Fütterung von Mikroben mit Elektronen
Über den Weg der sogenannten mikrobiellen Elektrosynthese könnten interessante Chemikalie oder Energieträger entstehen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Mikroben als stromgetriebene Zellfabriken

Das Konzept der mikrobiellen Brennstoffzelle funktioniert so: Bakterien bauen energiereiche Substanzen ab und die entstehenden Elektronen können an eine Elektrode abgegeben werden – Strom wird gewonnen. Denkbar ist auch der umgekehrte Fall: Werden geeignete Bakterien mit elektrischer Energie gespeist, werden sie zu zellulären Fabriken, die aus der Zutat Kohlendioxid interessante Chemikalien oder Energieträger herstellen können. „Mikrobielle Elektrosynthesen“ heißt dieses Konzept, dem sich ein Forschertandem des gemeinnützigen DECHEMA-Forschungsinstituts (DFI) in Frankfurt widmen will. Das interdisziplinären Wissenschaftlerteam um Dirk Holtmann und Klaus-Michael Mangold will dazu in der Natur nach geeigneten Mikroben fahnden oder sie molekularbiologisch für die Elektrosynthese fit machen. Zudem wollen die beiden Kollegen geeignete elektrochemische Reaktorsysteme entwickeln.

Elektronenübertragung mit Enzymen
Enzyme, die in Elektronenübertragungen involviert sind, direkt über einen Chip mit Strom antreiben.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Stromantrieb für Redoxenzyme

Monooxygenasen sind wahre Alleskönner. Norbert Sträter, beteiligt am Verbundprojekt „Stromgetriebene Redoxenzyme für Hydroxylierungsreaktionen“, ist von der Unentbehrlichkeit dieser Proteine überzeugt:  „Solche Redoxenzyme – zu denen vor allem die Cytochrome P450 gehören – werden zum Beispiel bei der biotechnologischen Synthese von Feinchemikalien als auch von Pharmazeutika eingesetzt.“ Chemisch gesehenen wird genau ein Sauerstoffatom eines Sauerstoffmoleküls auf das gewünschte Substrat übertragen, das zweite Sauerstoffatom wird zu Wasser reduziert. Die für diese Reaktion notwendigen Elektronen werden bisher vor allem über Reduktionsäquivalente wie NADPH bereitgestellt. Aber ausgerechnet für die Herstellung beziehungsweise das Recyceln dieser Moleküle gibt es noch keine biotechnologisch sinnvolle Lösung.

Elektrozym
P450-Enzyme und Hightech-Elektroden über Nanoröhrchen koppeln - das ist das Ziel des Forschertandems unter dem Titel Elektrozym.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Enzym-Elektroden für biotechnologische Synthesen

Die biotechnologische Herstellung von Grundchemikalien ist deshalb schwierig, weil entsprechende Enzyme oft nicht verfügbar sind oder nicht die für ein wirtschaftliches Verfahren notwendigen Aktivitäten aufweisen. Ein hohes Anwendungspotenzial existiert für Oxidationen, etwa wenn es darum geht C-H Bindungen selektiv zu oxidieren. Forscher aus Stuttgart und Reutlingen wollen in dem Tandem-Projekt „ElektroZym“ ein Cytochrom P450- Enzym auf chemische Umwandlungsschritte im Industriemaßstab trimmen. Dazu sollen die Proteine mit Carbon-Nanoröhrchen (CNT) gekoppelt werden.

Photobioelektrode
Eine Photobioelektrode fängt Licht über ein Photosystem ein (Mitte) und überträgt Elektronen auf ein Synthese-Enzym.

unspezifisch Mikroorganismen Biotechnologie/Systembiologie

Auf dem Weg zur Photobioelektrode

Enzymreaktionen durch Licht antreiben, Sonnenenergie in biochemische Wertstoffe umwandeln – das ist das Ziel des Forschertandems um Fred Lisdat von Technischen Hochschule Wildau und die Biophysiker Heiko Lokstein und Athina Zouni von der TU Berlin. Die Forscher wollen die Sonnenenergie nutzen, um biokatalytische Prozesse zu steuern. Dazu wollen sie eine sogenannte Photobioelektroden-Struktur entwickeln. Sie soll eine durch Licht aktivierbare Elektrode mit einem Enzymsystem kombinieren. Die Tandempartner bringen Expertisen aus der Photosynthese-Forschung, Elektrochemie und Bionanotechnologie zusammen.

Computermodell eines rational modellierten Peptids.
Computermodell eines rational modellierten Peptids.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Proteinhaftung mit Design

In der Vergangenheit wurden viele technisch nutzbare Biomoleküle nach dem Prinzip von Versuch und Irrtum hergestellt. Der rasante Anstieg in der Rechenleistung von Computern erlaubt es heute, solche Moleküle mit Modellen zu simulieren und Veränderungen gezielt zu planen. Die Herangehensweise des rationalen Designs wollen auch Sonja Berensmeier von der Technischen Universität München und Wolfgang Wenzel vom Karlsruher Institut für Technologie (KIT) für ihr gemeinsames Forschungsprojekt nutzen. Unter dem Titel „Rationale Entwicklung von Peptid-Oberflächen-Interaktionen“ arbeitet das Forschertandem künftig auf dieses Ziel hin.

unspezifisch unspezifisch unspezifisch

Gesunde und sichere Lebensmittel produzieren

Eine gesunde Ernährung setzt ein entsprechendes Angebot an Lebensmitteln voraus. Im Bereich der landwirtschaftlichen Produktion gilt es daher, die Qualität von pflanzlichen und tierischen Produkten zu optimierten. Mit unterschiedlichen Fördermaßnahmen will die Nationale Forschungsstrategie Bioökonomie dazu beitragen, die Wirkung von Lebensmitteln auf die Gesundheit zu erforschen und die Qualität und Sicherheit von Lebensmitteln zu verbessern.

unspezifisch unspezifisch Biotechnologie/Systembiologie

SeleKomM: Die Biotech-Kopie eines Golgi-Apparates

In der Zelle bekommen viele neu entstehende Proteine erst im Golgi-Apparat den letzten Schliff. In diesem Stapel von membranumschlossenen Räumen werden die Proteine modifiziert: Mal wird ein Zucker- oder Fettsäurerest angehängt, mal das Protein phosphoryliert. Da vielen biotechnologisch hergestellten Eiweißmolekülen dieser Feinschliff fehlt, wollen Frank Rosenau aus Ulm und seine Mitstreiter vom Verbundprojekt SeleKomM den Golgi-Apparat nachahmen – in Form eines Bioreaktors. Dafür forschen sie zum Beispiel an technischen Membranen, die anders als biologische Membranen aus Kunststoffen hergestellt werden. 

Michael Jewett hält einen Vortrag
Michael Jewett bezeichnete die Entwicklung von effizienten Bioreaktoren aktuell als größte Hürde einer zellfreien Bioproduktion.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Gesucht: Effizienter Bioreaktor für zellfreie Produktion

Eiweiße gezielt für die Industrie herstellen, mit zellfreien Systemen – mit diesem Ziel war das Verbundprojekt „Biomoleküle vom Band – Zellfreie Bioproduktion“ der Fraunhofer Gesellschaft  als erste Maßnahme im Strategieprozess „Biotechnologie 2020+“ im Jahr 2011  gestartet. Am 14. März haben sich nun alle beteiligten Forscher des Konsortiums zum jährlichen Erfahrungsaustausch in Berlin getroffen. Fazit: Immer mehr kristallisiert sich inzwischen heraus, wo künftig weiterer Forschungsbedarf besteht – etwa bei der Etablierung von Bioreaktoren für eine zellfreie Produktion.