Suche

Anzahl der Suchergebnisse: 5288
Elektronenübertragung mit Enzymen
Enzyme, die in Elektronenübertragungen involviert sind, direkt über einen Chip mit Strom antreiben.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Stromantrieb für Redoxenzyme

Monooxygenasen sind wahre Alleskönner. Norbert Sträter, beteiligt am Verbundprojekt „Stromgetriebene Redoxenzyme für Hydroxylierungsreaktionen“, ist von der Unentbehrlichkeit dieser Proteine überzeugt:  „Solche Redoxenzyme – zu denen vor allem die Cytochrome P450 gehören – werden zum Beispiel bei der biotechnologischen Synthese von Feinchemikalien als auch von Pharmazeutika eingesetzt.“ Chemisch gesehenen wird genau ein Sauerstoffatom eines Sauerstoffmoleküls auf das gewünschte Substrat übertragen, das zweite Sauerstoffatom wird zu Wasser reduziert. Die für diese Reaktion notwendigen Elektronen werden bisher vor allem über Reduktionsäquivalente wie NADPH bereitgestellt. Aber ausgerechnet für die Herstellung beziehungsweise das Recyceln dieser Moleküle gibt es noch keine biotechnologisch sinnvolle Lösung.

Elektrozym
P450-Enzyme und Hightech-Elektroden über Nanoröhrchen koppeln - das ist das Ziel des Forschertandems unter dem Titel Elektrozym.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Enzym-Elektroden für biotechnologische Synthesen

Die biotechnologische Herstellung von Grundchemikalien ist deshalb schwierig, weil entsprechende Enzyme oft nicht verfügbar sind oder nicht die für ein wirtschaftliches Verfahren notwendigen Aktivitäten aufweisen. Ein hohes Anwendungspotenzial existiert für Oxidationen, etwa wenn es darum geht C-H Bindungen selektiv zu oxidieren. Forscher aus Stuttgart und Reutlingen wollen in dem Tandem-Projekt „ElektroZym“ ein Cytochrom P450- Enzym auf chemische Umwandlungsschritte im Industriemaßstab trimmen. Dazu sollen die Proteine mit Carbon-Nanoröhrchen (CNT) gekoppelt werden.

Photobioelektrode
Eine Photobioelektrode fängt Licht über ein Photosystem ein (Mitte) und überträgt Elektronen auf ein Synthese-Enzym.

unspezifisch Mikroorganismen Biotechnologie/Systembiologie

Auf dem Weg zur Photobioelektrode

Enzymreaktionen durch Licht antreiben, Sonnenenergie in biochemische Wertstoffe umwandeln – das ist das Ziel des Forschertandems um Fred Lisdat von Technischen Hochschule Wildau und die Biophysiker Heiko Lokstein und Athina Zouni von der TU Berlin. Die Forscher wollen die Sonnenenergie nutzen, um biokatalytische Prozesse zu steuern. Dazu wollen sie eine sogenannte Photobioelektroden-Struktur entwickeln. Sie soll eine durch Licht aktivierbare Elektrode mit einem Enzymsystem kombinieren. Die Tandempartner bringen Expertisen aus der Photosynthese-Forschung, Elektrochemie und Bionanotechnologie zusammen.

Computermodell eines rational modellierten Peptids.
Computermodell eines rational modellierten Peptids.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Proteinhaftung mit Design

In der Vergangenheit wurden viele technisch nutzbare Biomoleküle nach dem Prinzip von Versuch und Irrtum hergestellt. Der rasante Anstieg in der Rechenleistung von Computern erlaubt es heute, solche Moleküle mit Modellen zu simulieren und Veränderungen gezielt zu planen. Die Herangehensweise des rationalen Designs wollen auch Sonja Berensmeier von der Technischen Universität München und Wolfgang Wenzel vom Karlsruher Institut für Technologie (KIT) für ihr gemeinsames Forschungsprojekt nutzen. Unter dem Titel „Rationale Entwicklung von Peptid-Oberflächen-Interaktionen“ arbeitet das Forschertandem künftig auf dieses Ziel hin.

unspezifisch unspezifisch unspezifisch

Gesunde und sichere Lebensmittel produzieren

Eine gesunde Ernährung setzt ein entsprechendes Angebot an Lebensmitteln voraus. Im Bereich der landwirtschaftlichen Produktion gilt es daher, die Qualität von pflanzlichen und tierischen Produkten zu optimierten. Mit unterschiedlichen Fördermaßnahmen will die Nationale Forschungsstrategie Bioökonomie dazu beitragen, die Wirkung von Lebensmitteln auf die Gesundheit zu erforschen und die Qualität und Sicherheit von Lebensmitteln zu verbessern.

unspezifisch unspezifisch Biotechnologie/Systembiologie

SeleKomM: Die Biotech-Kopie eines Golgi-Apparates

In der Zelle bekommen viele neu entstehende Proteine erst im Golgi-Apparat den letzten Schliff. In diesem Stapel von membranumschlossenen Räumen werden die Proteine modifiziert: Mal wird ein Zucker- oder Fettsäurerest angehängt, mal das Protein phosphoryliert. Da vielen biotechnologisch hergestellten Eiweißmolekülen dieser Feinschliff fehlt, wollen Frank Rosenau aus Ulm und seine Mitstreiter vom Verbundprojekt SeleKomM den Golgi-Apparat nachahmen – in Form eines Bioreaktors. Dafür forschen sie zum Beispiel an technischen Membranen, die anders als biologische Membranen aus Kunststoffen hergestellt werden. 

Michael Jewett hält einen Vortrag
Michael Jewett bezeichnete die Entwicklung von effizienten Bioreaktoren aktuell als größte Hürde einer zellfreien Bioproduktion.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Gesucht: Effizienter Bioreaktor für zellfreie Produktion

Eiweiße gezielt für die Industrie herstellen, mit zellfreien Systemen – mit diesem Ziel war das Verbundprojekt „Biomoleküle vom Band – Zellfreie Bioproduktion“ der Fraunhofer Gesellschaft  als erste Maßnahme im Strategieprozess „Biotechnologie 2020+“ im Jahr 2011  gestartet. Am 14. März haben sich nun alle beteiligten Forscher des Konsortiums zum jährlichen Erfahrungsaustausch in Berlin getroffen. Fazit: Immer mehr kristallisiert sich inzwischen heraus, wo künftig weiterer Forschungsbedarf besteht – etwa bei der Etablierung von Bioreaktoren für eine zellfreie Produktion.

Schale und Pipette
Zellkulturen für die Produktion von Naturstoffen könnten bald durch zellfreie Systeme aus Multienzymkomplexen ersetzt werden.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Das Enzymchanneling verstehen

Für die Produktion von komplexen Naturstoffen werden heutzutage häufig lebende Zellen genutzt. Das ist meist günstiger als aufwendige, rein chemische Synthesen, stößt aber auch immer wieder an Grenzen: Die Zellen müssen kontinuierlich mit Luft und Nährstoffen versorgt werden, es geht Energie für die Bildung von Biomasse und den Erhaltungsstoffwechsel verloren und die zu produzierenden Naturstoffe dürfen für die Zelle selbst nicht giftig sein. Viel einfacher wäre es, statt lebender Zellen nur ein zellfreies System aus Multienzymkomplexen mit mehreren hintereinander geschalteten Enzymen zu nutzen.

Diblockcopolymere unter dem  Elektronenmikroskop
Membran aus Diblockcopolymeren unter dem Elektronenmikroskop.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Robuste Membranen aus Blockpolymeren

Wenn es um die Aufreinigung von Lösungen oder Proben geht, nutzen Forscher häufig Membranen, um Stoffe zu filtern. Das Team um Christopher Barner-Kowollik vom Karlsruher Institut für Technologie und Felix Schacher von der Friedrich-Schiller-Universität Jena arbeitet an der nächsten Generation dieser Filtermaterialien. Die auf Blockcopolymeren basierenden Membranen könnten den gewöhnlichen Filtern gleich in mehrfacher Hinsicht überlegen sein. Im Verbundprojekt „BioCoBra – Robuste und vielseitige asymmetrische Membranen auf Basis schaltbarer Blockpolymere“ – sollen neuartige Werkstoffe für Filtermaterialien hergestellt und genau charakterisiert werden.

Modell des großen Fusionsproteins
Im Modell des großen Fusionsproteins (rechts, farbig) erkennt man noch die durch Verbindungsstücke aneinandergereihten Enzyme.

unspezifisch unspezifisch Biotechnologie/Systembiologie

SupraRedoxModul: Kurze Wege im Enzymkäfig

Was für Stadtplaner ein erstrebenswertes Ziel ist, hat auch für Biochemiker seinen Reiz: Kurze Wege. Wissenschaftler von der Universität des Saarlandes um Rita Bernhardt (Biochemie) und Michael Hutter (Bioinformatik), der Heinrich-Heine-Universität Düsseldorf um Vlada Urlacher (Biochemie) sowie der Universität Leipzig um Roger Gläser (Technische Chemie) möchten gern alle für eine fortlaufende enzymatische Umwandlung nötigen Mitspieler an einem Ort zusammenbringen. Ihnen schwebt eine Art „Superenzym“ vor. Der Name des Verbundprojektes „SupraRedoxModul“ verrät: Es dreht sich um Redoxenzyme.

Aus Acetat und ATP entsteht Flaviolin

unspezifisch unspezifisch Biotechnologie/Systembiologie

Multi-Enzym-Katalyse mit löchrigen Zellen

Die Produktion von komplexen Naturstoffen in biologischen Zellen ist eigentlich nichts Neues. Die Idee, für die Synthese der Naturstoffe  Zellen mit löchriger Membranhülle  zu nutzen hingegen schon. Sie steht im Zentrum des explorativen Projekts „MECAT – Multi-Enzym-Katalyse mit permeabilisierten Zellen“. Mit demTrick könnte die Produktion bisher biotechnologisch nicht herstellbarer komplexer Moleküle gelingen, ist das Team um Elmar Heinzle vom Institut für Technische Biochemie der Universität des Saarlandes überzeugt. Sie wollen das Verfahren nun für den Einsatz im Labor fitmachen.

Pickering-Emulsionen
Die Partikel in sogenannten Pickering-Emulsionen stabilisieren Gemische aus wasserliebenden und wasserabstoßenden Lösungen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Pickering-Emulsionen für die Biotechnologie

Kleine Partikel können Mischungen von wasserliebenden und wasserabstoßenden Lösungen, sogenannte Emulsionen, stabilisieren. Diesen Effekt hat der britische Chemiker Percival Pickering 1907 beschrieben. Die Pickering-Stabilisierung wird bereits seit Jahren in der Chemie als Extraktionsverfahren eingesetzt. Geht es nach Anja Drews und Marion Ansorge-Schumacher, haben durch Pickering stabilisierte Emulsionen bald eine Zukunft in der Biotechnologie. Im Forschertandem mit dem Titel "BioPICK" wollen die Forscherinnen passende Systeme und Membranreaktoren für Pickering-Emulsionen entwickeln und so deutlich mehr Reaktionen für biotechnologische Prozesse verfügbar machen.

unspezifisch unspezifisch unspezifisch

Nachwachsende Rohstoffe industriell nutzen

Die Nutzung nachwachsender Rohstoffe für industrielle Prozesse schont Natur, Umwelt und Klima und schafft eine Unabhängigkeit vom Öl. Die industrielle Biotechnologie ist dabei ein wichtiger Impulsgeber und leistet einen entscheidenden Beitrag für den Strukturwandel von einer erdöl- zu einer bio-basierten Industrie. Unter dem Dach des Handlungsfeldes "Nachwachsende Rohstoffe industriell nutzen" wird diese Entwicklung in der Nationalen Forschungsstrategie Bioökonomie weiter vorangetrieben.

Ein porenbildendes Protein
Modell der Proteinstruktur des porenbildenden Proteins. Gezeigt sind die Fass- und die Korken-Domäne sowie Wassermoleküle.

unspezifisch unspezifisch Chemie

Molekülfilter aus chiralen Membranen

Die Synthese von seltenen Aminosäuren ist technisch herausfordernd und kostspielig. Der Grund: Bei den chemischen Synthesen entsteht häufig ein racemisches Gemisch, also ein Mix aus sogenannten L- und D-Aminosäuren. In Größe und der Zahl der Atome unterscheiden sich diese Geschwistermoleküle zwar nicht, dafür aber in ihrer räumlichen Anordnung, die für ihre Funktion entscheidend sind. In einem Forschertandem arbeiten Proteiningenieur Ulrich Schwaneberg von Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen und der Polymerexperte Alexander Böker vom Deutschen Wollforschungsinstitut (DWI) an speziellen Membranen, die solche racemische Gemische trennen können.

Eine Durchstichflasche
In kleinen Durchstichflaschen können die komplexen Naturstoffe für eine spätere Analyse aufbewahrt werden.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Biosynthesewege planen und konstruieren

Gerade komplexe Wirkstoffmoleküle lassen sich häufig einfacher durch Mikroben herstellen als mit aufwendigen chemischen Synthesen. Mit biotechnischen Methoden lassen sich Mikroben wie nach dem Baukastenprinzip maßschneidern, um bestimmte Naturstoffe zu synthetisieren. Dieses Ziel verfolgen Silke Wenzel und Rolf Müller von der Universität des Saarlandes und Hubert Bernauer von der Firma ATG:biosynthetics GmbH in Merzhausen bei Freiburg. Die Pharmbiotec GmbH ebenfalls aus Saarbrücken stellt dazu die notwendigen analytischen Werkzeuge zur Verfügung. Im Verbundprojekt „SynBioDesign- Synthetische Biologie zum Design von Produktionssystemem für komplexe Naturstoffe“ soll mithilfe des Metabolic Engineering die Produktion komplexer Moleküle optimiert werden. Damit könnten sich künftig in den Mikroben auch Moleküle in neuen Strukturvarianten herstellen lassen, die sich bisher nicht gewinnen ließen.

Metallische Schäume
Muster von biofunktionalisierbaren metallischen Schäumen mit unterschiedlicher Porengröße

unspezifisch unspezifisch Biotechnologie/Systembiologie

ZMWBioKat: Metallische Schäume in Biosensoren

Anett Werner vom Institut für Lebensmittel- und Bioverfahrenstechnik der Technischen Universität Dresden ist sich sicher, dass Metalle bei eine Vielzahl biotechnologischer Anwendungen bessere Träger für Enzyme, Farbstoffe oder ganze Zellen sind als Glas oder Keramik: „Metalle überzeugen durch ihre hohe mechanische Stabilität und ihre hohe Toleranz gegenüber Druckschwankungen. Außerdem können sie für jede Anwendung jeweils passgenau hergestellt werden.“ Ob es zu einem Siegeszug kommt, hängt auch ein bisschen von ihrem Verbundprojekt „ZMWBioKat“ ab.

Peptid-Chip-Drucker
Frank Breitling (li.) und Alexander Nesterov-Müller (re.) nutzen Peptid-Chip-Drucker um hochdichte Peptidarrays zu erzeugen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Peptid-Chips mit eingebautem Schalter

Ein Team um Alexander Nesterov-Müller vom Karlsruher Institut für Technologie (KIT) will in dem Verbundprojekt „Entwicklung eines Peptidschalters“ eine Methode entwickeln, mit dem sich Protein-bindende Moleküle verlässlich, schnell und bezahlbar für viele unterschiedliche Bindungspartner finden lässt. Bei der Suche nach dem richtigen Molekül für eine spezifische Anwendung kommen sogenannte hochdichte Peptidarrays zum Einsatz. Auf einem vorbehandelten Glasträger werden mit einem Laserdrucker die wenige Mikrometer große Peptidspots aufgetragen. „Wir haben einen Prototypen entwickelt, der in einem xerographischen Verfahren rund 800 Spots pro Quadratzentimeter druckt“, berichtet Nesterov-Müller.

Leuchtende Ampulle

unspezifisch unspezifisch Biotechnologie/Systembiologie

PHAROS: Auf dem Weg zur künstlichen Pflanze

Für Burkhard König von der Universität Regensburg und Volker Sieber von der TU München ist Licht die ultimative erneuerbare Ressource: Überall auf der Welt ist es kostenlos als saubere Energieform verfügbar. Um Licht jedoch biochemisch verwertbar zu machen, sind sogenannte Photokatalysatoren notwendig. Weltweit wird dafür vor allem an Metallkomplexen geforscht. Ein großes Problem dieser Verbindungen ist ihre kurze Lebensdauer, ein weiteres der Bedarf an Schwermetallen wie Iridium und Ruthenium. Das bayerische Forschertandem will eine neue Generation von Photokatalysatoren entwickeln. „Wir wollen die Photokatalyse erstmals über Stunden hinweg aufrechterhalten. Außerdem suchen wir nach ‚grünen’ Alternativen, um auf die giftigen, seltenen und somit teuren Schwermetalle verzichten zu können.“

Ein Biotechnologielabor
Biotechnologische Produktion ist schwer zu überwachen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Mikrokapseln für die Prozess-Überwachung

Bislang ist die Steuerung von biotechnologischen Prozessen weitgehend Erfahrungssache. Denn es fehlen Methoden, um bereits während der Produktion von Wertstoffen zu messen, ob der Prozess in die richtige Richtung läuft. Das ist wichtig, weil Produktkontaminationen ganze Produktchargen unbrauchbar machen und für große wirtschaftlich Schäden sorgen können. Das Kooperationsprojekt „Prozessüberwachung in vitro und in vivo mit Polyelektrolyt-Mikrokapseln“ soll dies nun ändern. In der Machbarkeitsstudie entwickeln der Biochemiker Sebastian Springer, der Biophysiker Mathias Winterhalter und der Biotechnologe Gerd Klöck eine universell einsetzbare Messmethode, mit der sich für den wichtige Stoffwechselprodukte und Moleküle in Kulturmedien und Zellen in Echtzeit erfassen lassen.

Leuchtendes Chromosom
Cell2Fab hat sich die Aufgabe gesetzt, künstliche Chromosomen als Steuereinheit von Hefezellen zu entwickeln.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Cell2Fab: Zellfabriken mit künstlichen Chromosomen

Bisherige biotechnische Verfahren nutzen einzelne Enzyme oder Produktionsorganismen mit speziell maßgeschneidertem Stoffwechsel, um ein bestimmtes Produkt herzustellen. Die Möglichkeit, ganze Chromosomen aus DNA zu synthetisieren, soll nun genutzt werden, um ein ringförmiges künstliches Chromosom in Hefezellen als Steuerungsmodul zu entwickeln. Im Rahmen des Projektes „Synthetische Biosysteme – von der Zelle zur Fabrikation (Cell2Fab)“ baut Katrin Messerschmidt an der Universität Potsdam eine Nachwuchsgruppe auf, um ein entsprechendes künstliches Chromosom etablieren.

Im Projekt OptoSys wollen Wissenschaftler die Feinsteuerung biotechnologische Produktionsprozesse mit Hilfe von Licht vorantreiben

unspezifisch unspezifisch Biotechnologie/Systembiologie

OptoSys: Bioprozesse mit Licht steuern

Eine Echtzeit-Überwachung und -Steuerung biologischer Vorgänge in Bioprozessen ist bis heute noch nicht verwirklicht. Im Rahmen des Verbundprojektes „OptoSys – neue Optosensoren und Photoregulatoren zur Licht-vermittelten Steuerung und Analyse molekularer Systeme“ wollen Wissenschaftler der Universität Düsseldorf, der RWTH Aachen und des Forschungszentrums Jülich eine völlig neuartige, lichtbasierte Messung und Steuerung biotechnologischer Prozesse etablieren.

Zellfrei CO2 in einen Wertstoff umwandeln: dieses Ziel haben sich Magdeburger und Biberacher Forscher gesetzt.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Enzyme für die Kohlendioxid-Verwertung

Angesichts des globalen Anstiegs des Klimagases Kohlendioxid sind Technologien gefragt, die das Spurengas aus der Atmosphäre entfernen. Ansätze, CO2 als Rohstoff zu nutzen, konzentrieren sich derzeit vor allem auf chemische Umwandlungen oder auf Mikroalgen, die das Gas für ihr Wachstum nutzen. Das für zunächst fünf Jahre geförderte Tandemprojekt „Analyse und Design bakterieller Enzymkaskaden zur stofflichen Verwertung von CO2“ will dagegen ungewöhnliche Enzyme aus Bakterien nutzbar machen, um Kohlendioxid in einem zellfreien Prozess in Wertstoffe umzuwandeln.

Energie unspezifisch Energietechnologien

Energieträger auf Basis von Biomasse ausbauen

Als Bestandteil des Energie-Mixes werden Energieträger aus Biomasse künftig an Bedeutung gewinnen. Sie tragen im Rahmen regionaler Versorgungskonzepte zur einheimischen Wertschöpfung bei und können Arbeitsplätze in der Land- und Forstwirtschaft sowie in der Industrie schaffen. Unter dem Dach des Handlungsfeldes "Bioenergie ausbauen" setzt sich die Nationale Forschungsstrategie Bioökonomie dafür ein, Bioenergie international wettbewerbsfähiger, klima-, natur- und umweltfreundlicher als heute zu erzeugen.

Eine Treppe aus Legobausteinen

unspezifisch unspezifisch Biotechnologie/Systembiologie

Komparti: Enzymatische Produktionsschritte enger koppeln

Biotechnologische Produktionsprozesse laufen heute meist als Ein-Schritt-Reaktionen in einem einzigen Bioreaktor ab. Für chemische Umsetzungen mit mehreren Reaktionsschritten ist dies oft von Nachteil. Denn die Enzyme, die die einzelnen chemischen Reaktionen beschleunigen, funktionieren oft bei ganz unterschiedlichen Bedingungen optimal. Außerdem können unerwünschte Nebenreaktionen auftreten, die die Prozesse unwirtschaftlich machen. In dem explorativen Projekt „Komparti – Kompartimentierung als Basistechnologie für neue multienzymatische Produktionsverfahren“ untersuchen Forscher um An-Ping Zeng von der TU Hamburg-Harburg in den nächsten zwei Jahren, wie sich heutigen Einschränkungen der Biosynthese durch die räumliche Annäherung oder Trennung von Enzymen auf einem Materialgerüst überwinden lässt.

unspezifisch unspezifisch unspezifisch

Internationale Kooperationen

Mit einer stärkeren Internationalisierung von Wissenschaft und Wirtschaft kann die Wettbewerbsfähigkeit des Bioökonomiestandortes Deutschland ausgebaut werden. Dies wird im Handlungsfeld "Internationale Kooperationen" der Nationalen Forschungsstrategie Bioökonomie vorangetrieben.

Essigsäurebakterien
Essigsäurebakterien wie diese hier sollen in Zukunft, mit Hilfe von CO2 und Strom, wichtige Chemikalien bereitstellen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Mikroben unter Strom für die Stoffproduktion

Wirtschaftliche Verfahren, die das Klimagas Kohlendioxid reduzieren helfen, sind derzeit noch Mangelware. Einen Weg, das CO2 zur Wertstoffproduktion oder sogar zur Speicherung von elektrischem Strom in energiereichen chemischen Produkten zu nutzen, beschreiten Forscher jetzt im Rahmen des explorativen Projektes „Bioelektrosynthese zur Stoffproduktion aus Kohlenstoffdioxid“ im Rahmen der Fördermaßnahme Basistechnologien.

Feuerball
In Methangas steckt nicht nur viel Energie.

unspezifisch unspezifisch Biotechnologie/Systembiologie

ECOX: Chemo- und Biokatalyse vereinen

Chemische und biologische Synthesen erfordern oft ganz unterschiedliche Temperaturen und Reaktionsbedingungen. Das über drei Jahre geförderte Kooperationsprojekt „ECOX – Enzymatisch-chemokatalytische Oxidationskaskaden in der Gasphase“ zielt darauf ab, chemische und biologische Prozesse erstmals zu koppeln, um aus Methangas energie- und ressourcenschonend Ameisensäure, Methanol und Methylformiat herzustellen – wichtige Grundchemikalien für die Chemieindustrie.

Bernsteinsäuremolekül
Der Produktionsprozess von Bernsteinsäure soll als Modell dienen, um künstliche Gen-Schalter zu testen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Bioproduktion flexibler gestalten

Biotechnologische Produktionsprozesse sind bislang oft wenig flexibel: Häufig werden Mikroben gentechnisch so optimiert, dass sie nur unter ganz bestimmten Bedingungen eine maximale Produktausbeute liefern. Mangelnde Flexibilität ist dann problematisch, wenn die Zellen unter anderen Bedingungen produzieren als wachsen, wenn giftige Produkte entstehen oder wenn das Produkt den Prozess hemmt. Im Rahmen des Tandemprojektes „Dynamische Prozessoptimierung in der Biotechnologie“ entwickeln Katja Bettenbrock vom Max-Planck-Institut für Dynamik komplexer Systeme in Magdeburg und Andreas Kremling von der Technischen Universität München mit Hilfe von Computersimulationen gentechnisch veränderte Coli-Bakterien, deren Stoffwechsel sich während der Produktion umschalten lässt.

Kieselalge
Kieselalgen stellen Kalkblättchen her, die für die Bauindustrie als Zusatzstoffe sehr interessant sind.

unspezifisch unspezifisch Biotechnologie/Systembiologie

ZeBiCa2: Kalkpartikel aus Kieselalgen kontrolliert formen

Verbundmaterialien aus komplex aufgebauten Biomineralen und organischen Molekülen versprechen vielfältige Anwendungen in Medizin, Lebensmittelbranche und Industrie. Bislang werden weitgehend "ungeformte" Partikel durch Ausfällen oder Vermahlen von Mineralien oder aus Lagerstätten von Kieselalgen gewonnen. In dem Kooperationsprojekt ZeBiCa2 geht es erstmals darum, biotechnologische Produktionsverfahren zu entwickeln, um die Mineralisierung hochkomplexer dreidimensionaler Kalkstrukturen durch die Meeresalge Emiliania huxleyi biotechnologisch zu steuern und industriell zu nutzen.

Nanopartikel+Bakterien= neue Materiealien und neue Medikamente
Das Zusammenbringen von Bakterien und Nanopartikeln soll bislang unentdeckte Fähigkeiten von Mikroorganismen offenbaren.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Bactocat: Mikroben mit Metallpartikel-Toleranz gesucht

Viele Mikroorganismen sind Überlebenskünstler. Manche verfügen über ganz erstaunliche Fähigkeiten, die ihnen helfen, selbst mit den widrigsten Umwelteinflüssen klarzukommen. Das macht sie auch zu potenziellen Lieferanten neuer Wirk- und Werkstoffe. Michael Köhler, Leiter des Fachgebiets Mikroreaktionstechnik an der Technischen Universität Ilmenau, sucht im Verbund-Projekt „Bactocat“ Zellen mit besonders hartnäckigen Eigenschaften: Die Forscher haben es auf Metallnanopartikel- und Schwermetall-tolerante Mikroorganismen abgesehen.

  Membrankapseln mit Enzymen
Membrankapseln mit Enzymen im Inneren, mit deren Hilfe sich zellfrei Feinchemikalien herstellen lassen.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Synthetische Reaktionsräume für Enzyme einrichten

Zellen sind wie Fabriken in verschiedene Reaktionsräume unterteilt, in denen bestimmte Schritte eines Produktionsprozesses ablaufen. Ließen sich solche Reaktionsräume im Labor herstellen, wäre das ein erster Schritt auf dem Weg zur künstlichen Minimalzelle, die nur mit dem absolut nötigsten Inventar ausgestattet ist. Die Biotechnologin Kathrin Castiglione will solche Reaktionsräume im Labor herstellen, um damit in Zukunft Feinchemikalien zellfrei im großen Maßstab zu produzieren. Dazu baut sie am Lehrstuhl für Bioverfahrenstechnik der Technischen Universität München eine für die nächsten vier Jahre finanzierte Nachwuchsgruppe im Rahmen der Fördermaßnahme „Basistechnologien“ auf.

Hörsaal des Robert-Koch-Forums
35 Projekte mit Zukunftspotenzial für neue biotechnologische Verfahren wurden im Hörsaal des Robert-Koch-Forums präsentiert.

unspezifisch unspezifisch Biotechnologie/Systembiologie

35 Forschungsprojekte zur Biotechnologie der Zukunft gestartet

Das Fundament legen für die Entwicklung biotechnologischer Produktionsverfahren der Zukunft: Das will die Fördermaßnahme "Basistechnolgien für eine nächste Generation biotechnologischer Verfahren" erreichen, die das Bundesministerium für Bildung und Forschung (BMBF) 2011 gestartet hat. In den kommenden Jahren werden 35 interdisziplinäre Projekte mit insgesamt 42 Millionen Euro gefördert. In den ehrwürdigen Gemäuern des Robert-Koch-Forums trafen sich am 12. Dezember in Berlin die Projektleiter , um ihre Vorhaben einander vorzustellen. Sie reichen thematisch von der Bioelektrochemie über die Synthetische Biologie bis hin zur lichtgetriebenen Stoffproduktion.

Forscher aus acht Frauenhofer-Instituten
Zu dem Statusseminar "Zellfreie Bioproduktion" trafen sich Forscher aus allen acht beteiligten Fraunhofer-Instituten.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Energieschub für die zellfreie Bioproduktion

Eiweiße nach Wunsch für industrielle Anwendungen zusammenzubauen, das ist das Ziel des Verbundprojekts „Biomoleküle vom Band“, das die Fraunhofer-Gesellschaft im vergangenen Jahr gestartet hat.  Es ist gleichzeitig die erste konkrete Fördermaßnahme im Strategieprozess. Nun trafen sich die Forscher des Konsortiums „Zellfreie Bioproduktion“ in Berlin, um eine erste Zwischenbilanz zu ziehen. Am 15. und 16. März wurde im Fraunhofer Forum diskutiert, wie gut die Zusammenarbeit zwischen Ingenieuren und Lebenswissenschaftlern angelaufen ist. Frank Fabian Bier vom Fraunhofer-Institut für biomedizinische Technik in Potsdam (IBMT) äußerte sich sehr zufrieden mit dem bisherigen Verlauf. So sei es trotz der kurzen Zeit schon gelungen, die ersten wissenschaftlichen Erfolge zu erzielen. Zum Beispiel bei der Versorgung der zellfreien Systeme mit Energie.

Thomas Rachel, Parlamentarischer Staatssekretär im Bundesministerium für Bildung
Thomas Rachel übergibt der Fraunhofer Gesellschaft einen Förderbescheid über 15 Millionen Euro.

unspezifisch unspezifisch Biotechnologie/Systembiologie

Zellfreie Manufaktur für Biomoleküle

Die industrielle Produktion von Proteinen geschieht in der Regel im Inneren von Zellen oder Mikroorganismen. Jedoch ist das manchmal sehr schwierig: Toxische Proteine töten die Zellen ab, oder für die Pharmaindustrie interessante Membranproteine lassen sich so nur sehr schwer herstellen. Ein Verbund aus Wissenschaftlern um Frank-Fabian Bier und Stefan Kubick vom Fraunhofer Institut für biomedizinische Technik in Potsdam (IBMT) arbeitet an einem Verfahren, wie sie unabhängig von Zellen oder Mikroorganismen Proteine produzieren können – und zwar im industriellen Maßstab. Dafür stellt die Fraunhofer-Gesellschaft 6 Millionen Euro im Rahmen ihrer Systemforschung zur Verfügung. Diese Investitionen werden vom Bundesministerium für Bildung und Forschung (BMBF) – als erste konkrete Maßnahme im Strategieprozess – mit 15 Millionen Euro für die nächsten drei Jahre ergänzt. Insgesamt acht Fraunhofer-Institute sind am Verbund beteiligt.

Die Politikstrategie

Mit der Nationalen Politikstrategie Bioökonomie unterstützt die Bundesregierung den Wandel zu einer rohstoffeffizienten Wirtschaft, die nicht auf fossilen, sondern auf nachwachsenden Ressourcen basiert.

Waldlichtung im Sonnenschein
Die "Green Economy" ist nach dem Handel das zweitstärkste Gründungsfeld.

unspezifisch unspezifisch unspezifisch

Grüne Startups liegen im Trend

In der Nachhaltigkeitsszene gibt es offenbar einen großen Gründergeist, die Zahl der Startups steigt. Das geht aus dem Green Economy Gründungsmonitor hervor. 

Businessplan Wettbewerb
Mit dem ACHEMA-Gründerpreis sollen innovative Geschäftsideen aus Chemie, Anlagenbau und Biotechnologie unterstützt werden.

Energie unspezifisch Biotechnologie/Systembiologie

ACHEMA-Gründerpreis gestartet

Start-ups aus Chemie, Verfahrenstechnik und Biotechnologie können sich ab sofort um den ACHEMA-Gründerpreis bewerben. Es winkt ein Preisgeld von 10.000 Euro.

Biotenside werden in Arzneimittel, Kosmetika aber auch im Saatgut eingesetzt.
Biotenside wie Rhamnolipide werden in der Pharma- und Kosmetikindustrie, aber auch als Tierfutterzusatz eingesetzt.

Chemie Mikroorganismen Biotechnologie/Systembiologie

Neuartige Biotenside produktionsreif

Ob Kosmetika oder Waschmittel - Tenside werden in der Industrie vielfach genutzt, auch biobasierte Alternativen sind gefragt. Vor allem Rhamnolipide sind der letzte Schrei.

Chemie Pflanzen Chemie

Leuphana Universität Lüneburg

unspezifisch unspezifisch Biotechnologie/Systembiologie

Initiative Biotechnologie 2020+

Die Initiative „Nächste Generation biotechnologischer Verfahren – Biotechnologie 2020+“ hat das Bundesministerium für Bildung und Forschung (BMBF) im Jahre 2010 gemeinsam mit den großen Forschungsorganisationen und den Hochschulen in Form eines Strategieprozesses gestartet. Seitdem gab es zahlreiche Workshops und Konferenzen, in denen sich die Akteure vernetzt haben. Das BMBF hat auf der Basis der Ergebnisse aus dem Strategieprozess mehrere Fördermaßnahmen aufgelegt.

Politikwissenschaften

Leuphana Universität Lüneburg

Umwelttechnologie

Leuphana Universität Lüneburg

IKT

Leuphana Universität Lüneburg

Land-/Forstwirtschaft Pflanzen Lebensmitteltechnologie

Deutsches Institut für Lebensmitteltechnik (DIL) e.V.

Agrarwissenschaften

Ecologic Institut gemeinnützige GmbH

Automobil

Deutsche Akademie der Technikwissenschaften e. V. (acatech)

Land-/Forstwirtschaft Agrarwissenschaften

DINE e.V. – Deutsches Institut für Nachhaltige Entwicklung e.V.

Land-/Forstwirtschaft Wirtschaftswissenschaften

Zentrum für Betriebswirtschaft im Gartenbau e.V.

Automobil Pflanzen Energietechnologien

ITB-Institut für Innovation, Transfer und Beratung gGmbh

Land-/Forstwirtschaft Pflanzen Agrarwissenschaften

Forschungsinstitut für biologischen Landbau Deutschland e.V.

Land-/Forstwirtschaft Tiere Agrarwissenschaften

Institut für Binnenfischerei (IFB) e.V.

Bauwirtschaft Pflanzen Biotechnologie/Systembiologie

Institut für Holztechnologie Dresden gGmbH

Chemie Pflanzen Agrarwissenschaften

Institut für Lebensmittel- und Umweltforschung e.V.

Chemie Pflanzen Biotechnologie/Systembiologie

Institut für Nichtklassische Chemie e.V.

Bauwirtschaft Pflanzen Agrarwissenschaften

Institut für ökologische Wirtschaftsforschung (IÖW) GmbH

Energie Pflanzen Agrarwissenschaften

Kuratorium für Technik und Bauwesen in der Landwirtschaft e. V. (KTBL)

Energie Pflanzen Forstwissenschaften

Kuratorium für Waldarbeit und Forsttechnik (KWF) e.V.

Automobil Pflanzen Chemie

Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. (TITK)

Bund für Umwelt und Naturschutz (BUND), Landesverband Niedersachsen e.V.

Biodiversität

Institut für Wildbiologie Göttingen und Dresden e.V.