Initiative Biotechnologie 2020+: Mit Großprojekten auf Kurs
Im Rahmen der "Initiative Biotechnologie 2020+" arbeiten die Forschungsorganisationen an millionenschwere Großprojekten - zu Themen wie Synthetische Biologie oder druckbare Biotechnik.
Im Rahmen der "Initiative Biotechnologie 2020+" arbeiten die Forschungsorganisationen an millionenschwere Großprojekten - zu Themen wie Synthetische Biologie oder druckbare Biotechnik.
Ein neuartiges Nano-Sensorkonzept, das auf fluoreszierenden Bakterienproteinen beruht, kann schnell und einfach Arznei- und Schwermetallreste in Wasser nachweisen. Daran forschen deutsche Wissenschaftler-Teams im Verbundprojekt Aptasens.
Biochemische Prozesse sind äußerst komplex. Ein bisher noch wenig betrachteter Aspekt dieser Komplexität: biochemische Prozesse laufen in der Zelle in einem dreidimensionalen Raum ab und Moleküle selbst haben eine räumliche Gestalt. Der Jülicher Forscher Eric von Lieres möchte biochemische Prozesse in 3D auf modernen Computerarchitekturen simulieren. Die entwickelten Simulationsmodelle sollen dabei helfen, biotechnische Reaktionssysteme zu optimieren.
In der Biotechnologie sind Enzyme als Biokatalysatoren im Einsatz, die Synthese-Chemie wiederum setzt oftmals auf Chemokatalysatoren. Doch bisher gibt es kaum Fälle, in denen chemo- und biokatalytische Reaktionen erfolgreich kombiniert wurden. Diese enge Verzahnung der beiden „Katalyse-Welten“ hat sich ein Forschertandem um den Bielefelder Chemiker Harald Gröger und den Enzymtechnologen Werner Hummel von der Universität Düsseldorf vorgenommen. Das Forschertandem will das Konzept der chemoenzymatischen Mehrstufen-Eintopfsynthesen vorantreiben, um damit Spezial- oder Feinchemikalien herzustellen.
Stofftrennung ist ein wichtiger Arbeitsschritt in der biotechnologischen Praxis. Doch die konventionellen Methoden sind oft aufwändig, kostenintensiv und schlecht skalierbar. Der Forscher Thomas Burg vom Max-Planck-Institut für biophysikalische Chemie in Göttingen will mit Hilfe neuer Nanofabrikationsmethoden sogenannte biologische Hydrogele zur Lösung dieses Problems nutzbar machen. Hydrogele wirken in Zellen und Geweben oft als hochselektive Barrieren, welche einen kontrollierten Transport von Molekülen ermöglichen. Burg möchte solche Gele in sehr dünne nanoporöse Feststoffmembranen integrieren. Dazu entwickelt er eine Mikrofluidikplattform, mit der sich die Funktionsweise der Gele untersuchen und künftig einmal Stoffgemische in zellfreien Produktionssystemen aufreinigen lassen.
Robin Ghosh will Enzyme einsperren: „Im Inneren von Mikrokapseln sollen sie aus einem Ausgangsprodukt in mehreren Schritten das gewünschte Endprodukt herstellen.“ Das Besondere an dem von Ghosh koordinierten Verbundprojekt „EnzCaps“ ist die Umgebung, in der die Reaktionen stattfinden sollen: organische Lösungsmittel. Das württembergische Team will so das Anwendungsspektrum der enzymatischen Biotechnologie erweitern. Viele wichtige Ausgangs- und Endprodukte sind nicht in wässriger Umgebung löslich. Enzymreaktionen in organischen Lösungsmitteln sollen hier einen Ausweg bieten. Doch bis es soweit ist, müssen zunächst einmal Enzyme entwickelt werden, die auch in der für sie ungewohnten Umgebung zufriedenstellend arbeiten.
In der Bioanalytik werden – etwa in Trenn- und Affinitätssäulen – meist dichtgepackte Kügelchen eingesetzt. Ein anderes Konzept stellen die Monolithen dar, das sind homogene polymere Matrix-Strukturen, die von winzigen Poren durchsetzt sind. Ein Verbundprojekt namens „Bioliths“ um den Stuttgarter Polymerchemiker Michael Buchmeiser und den Biotechnologen Bernhard Hauer möchte ein innovatives monolithisches Trägermaterial entwickeln, das sich einmal als Reaktor für bestimmte Enzyme eignen soll. Hierbei sollen die Enzyme jedoch nicht in wässriger Umgebung arbeiten, sondern in ionischen Flüssigkeiten. Davon versprechen sich nicht nur die Forscher aus Stuttgart viel Potenzial für neue Produkte. Auch das Geesthachter Bioanalytik-Unternehmen GALAB Laboratories GmbH ist an dem Projekt beteiligt.
Das Konzept der mikrobiellen Brennstoffzelle funktioniert so: Bakterien bauen energiereiche Substanzen ab und die entstehenden Elektronen können an eine Elektrode abgegeben werden – Strom wird gewonnen. Denkbar ist auch der umgekehrte Fall: Werden geeignete Bakterien mit elektrischer Energie gespeist, werden sie zu zellulären Fabriken, die aus der Zutat Kohlendioxid interessante Chemikalien oder Energieträger herstellen können. „Mikrobielle Elektrosynthesen“ heißt dieses Konzept, dem sich ein Forschertandem des gemeinnützigen DECHEMA-Forschungsinstituts (DFI) in Frankfurt widmen will. Das interdisziplinären Wissenschaftlerteam um Dirk Holtmann und Klaus-Michael Mangold will dazu in der Natur nach geeigneten Mikroben fahnden oder sie molekularbiologisch für die Elektrosynthese fit machen. Zudem wollen die beiden Kollegen geeignete elektrochemische Reaktorsysteme entwickeln.
Monooxygenasen sind wahre Alleskönner. Norbert Sträter, beteiligt am Verbundprojekt „Stromgetriebene Redoxenzyme für Hydroxylierungsreaktionen“, ist von der Unentbehrlichkeit dieser Proteine überzeugt: „Solche Redoxenzyme – zu denen vor allem die Cytochrome P450 gehören – werden zum Beispiel bei der biotechnologischen Synthese von Feinchemikalien als auch von Pharmazeutika eingesetzt.“ Chemisch gesehenen wird genau ein Sauerstoffatom eines Sauerstoffmoleküls auf das gewünschte Substrat übertragen, das zweite Sauerstoffatom wird zu Wasser reduziert. Die für diese Reaktion notwendigen Elektronen werden bisher vor allem über Reduktionsäquivalente wie NADPH bereitgestellt. Aber ausgerechnet für die Herstellung beziehungsweise das Recyceln dieser Moleküle gibt es noch keine biotechnologisch sinnvolle Lösung.
Die biotechnologische Herstellung von Grundchemikalien ist deshalb schwierig, weil entsprechende Enzyme oft nicht verfügbar sind oder nicht die für ein wirtschaftliches Verfahren notwendigen Aktivitäten aufweisen. Ein hohes Anwendungspotenzial existiert für Oxidationen, etwa wenn es darum geht C-H Bindungen selektiv zu oxidieren. Forscher aus Stuttgart und Reutlingen wollen in dem Tandem-Projekt „ElektroZym“ ein Cytochrom P450- Enzym auf chemische Umwandlungsschritte im Industriemaßstab trimmen. Dazu sollen die Proteine mit Carbon-Nanoröhrchen (CNT) gekoppelt werden.
Enzymreaktionen durch Licht antreiben, Sonnenenergie in biochemische Wertstoffe umwandeln – das ist das Ziel des Forschertandems um Fred Lisdat von Technischen Hochschule Wildau und die Biophysiker Heiko Lokstein und Athina Zouni von der TU Berlin. Die Forscher wollen die Sonnenenergie nutzen, um biokatalytische Prozesse zu steuern. Dazu wollen sie eine sogenannte Photobioelektroden-Struktur entwickeln. Sie soll eine durch Licht aktivierbare Elektrode mit einem Enzymsystem kombinieren. Die Tandempartner bringen Expertisen aus der Photosynthese-Forschung, Elektrochemie und Bionanotechnologie zusammen.
Sellerie kann bei Allergikern schwerwiegende Reaktionen auslösen. Immunologen aus Darmstadt und Karlsruhe entwickeln einen Schnelltest für Sellerie-Allergene, der Kontaminationen in Lebensmitteln zuverlässig aufspüren kann.
Um Eiweißmoleküle mit neuen Eigenschaften zu entwickeln, setzen Biotechnologen auf die sogenannte gelenkte Evolution. Doch wie lassen sich riesige Bibliotheken mit Enzymvarianten schneller nach interessanten Molekülen durchmustern? Ein Team um Ulrich Schwaneberg von der RWTH Aachen arbeitet an einem Verfahren, mit der sich die Suche beschleunigen lässt. Ziel des explorativen Projekts mit dem Titel „Zellfreie durchflusszytometrie-basierte in vitro Vesikel-Durchmusterungstechnologie für eine gelenkte Evolutionsrunde pro Tag“: In 24 Stunden eine Evolutionsrunde abschließen und die daraus hervorgegangene Enzyme vollständig durchmustern.
In der Vergangenheit wurden viele technisch nutzbare Biomoleküle nach dem Prinzip von Versuch und Irrtum hergestellt. Der rasante Anstieg in der Rechenleistung von Computern erlaubt es heute, solche Moleküle mit Modellen zu simulieren und Veränderungen gezielt zu planen. Die Herangehensweise des rationalen Designs wollen auch Sonja Berensmeier von der Technischen Universität München und Wolfgang Wenzel vom Karlsruher Institut für Technologie (KIT) für ihr gemeinsames Forschungsprojekt nutzen. Unter dem Titel „Rationale Entwicklung von Peptid-Oberflächen-Interaktionen“ arbeitet das Forschertandem künftig auf dieses Ziel hin.
Heterosis heißt das Phänomen, das Züchter nutzen, um den Ertrag von Nutzpflanzen deutlich zu steigern. In dem Projekt HYBWHEAT wollen Forscher aus Gatersleben Weizen mit gentechnischen Tricks für die Hybridzüchtung fit machen.
In der Zelle bekommen viele neu entstehende Proteine erst im Golgi-Apparat den letzten Schliff. In diesem Stapel von membranumschlossenen Räumen werden die Proteine modifiziert: Mal wird ein Zucker- oder Fettsäurerest angehängt, mal das Protein phosphoryliert. Da vielen biotechnologisch hergestellten Eiweißmolekülen dieser Feinschliff fehlt, wollen Frank Rosenau aus Ulm und seine Mitstreiter vom Verbundprojekt SeleKomM den Golgi-Apparat nachahmen – in Form eines Bioreaktors. Dafür forschen sie zum Beispiel an technischen Membranen, die anders als biologische Membranen aus Kunststoffen hergestellt werden.
Zwei Jahre bei der Züchtung neuer Maissorten sparen – das ist das Ziel von Pflanzenforschern aus Hohenheim. Durch statistische Prognosen anhand genetischer Daten wollen die Wissenschaftler besonders geeignete Elternpaare ermitteln, miteinander kreuzen und so den Züchtungsprozess verkürzen. Dabei soll ein uraltes Mysterium der Pflanzenzüchtung enträtselt werden: Der Heterosis-Effekt, der Nachkommen bestimmter Kreuzungen besonders kräftig und ertragreich gedeihen lässt.
Mit der Förderinitiative BioFuture hat das BMBF jungen Nachwuchsforschern attraktive Karriereperspektiven geboten. Petra Schwille, heute Direktorin am Max-Planck-Institut für Biochemie, gehörte 1999 zu den Preisträgern.
In Straubing hat der Chemiekonzern Clariant im Juli 2012 eine Demonstrationsanlage zur Herstellung von Bioethanol aus Stroh und anderen Feldabfällen in Betrieb genommen. Es ist die bis dato größte deutsche Anlage zur Herstellung von Biokraftstoffen der zweiten Generation.
Eiweiße gezielt für die Industrie herstellen, mit zellfreien Systemen – mit diesem Ziel war das Verbundprojekt „Biomoleküle vom Band – Zellfreie Bioproduktion“ der Fraunhofer Gesellschaft als erste Maßnahme im Strategieprozess „Biotechnologie 2020+“ im Jahr 2011 gestartet. Am 14. März haben sich nun alle beteiligten Forscher des Konsortiums zum jährlichen Erfahrungsaustausch in Berlin getroffen. Fazit: Immer mehr kristallisiert sich inzwischen heraus, wo künftig weiterer Forschungsbedarf besteht – etwa bei der Etablierung von Bioreaktoren für eine zellfreie Produktion.
Für die Produktion von komplexen Naturstoffen werden heutzutage häufig lebende Zellen genutzt. Das ist meist günstiger als aufwendige, rein chemische Synthesen, stößt aber auch immer wieder an Grenzen: Die Zellen müssen kontinuierlich mit Luft und Nährstoffen versorgt werden, es geht Energie für die Bildung von Biomasse und den Erhaltungsstoffwechsel verloren und die zu produzierenden Naturstoffe dürfen für die Zelle selbst nicht giftig sein. Viel einfacher wäre es, statt lebender Zellen nur ein zellfreies System aus Multienzymkomplexen mit mehreren hintereinander geschalteten Enzymen zu nutzen.
Glykane sind Zuckerketten. Sie gelten als Zielstrukturen der Zukunft in der Biomedizin. Wissenschaftler erforschen, wie sich die auf der Zelloberfläche vorkommenden Glykane nutzen lassen, um das Immunsystem zu modulieren. Auf diese Weise könnten wirksame Krebsmedikamente oder schützende Impfstoffe entstehen. Das Team von Lothar Elling vom Institut für Biotechnologie der RWTH Aachen und Helmholtz-Institut für Biomedizinische Technik hat sich nun zum Ziel gesetzt, die Synthese der Glykan-Moleküle zu vereinfachen. Dazu will das Team die Zuckerketten-Produktion im Labor nach dem Vorbild des Golgi-Apparats in Zellen nachbauen. Das explorativen Projekt nennt sich deshalb „Die Golgi-Glykan-Fabrik“ (GGF).
Wenn es um die Aufreinigung von Lösungen oder Proben geht, nutzen Forscher häufig Membranen, um Stoffe zu filtern. Das Team um Christopher Barner-Kowollik vom Karlsruher Institut für Technologie und Felix Schacher von der Friedrich-Schiller-Universität Jena arbeitet an der nächsten Generation dieser Filtermaterialien. Die auf Blockcopolymeren basierenden Membranen könnten den gewöhnlichen Filtern gleich in mehrfacher Hinsicht überlegen sein. Im Verbundprojekt „BioCoBra – Robuste und vielseitige asymmetrische Membranen auf Basis schaltbarer Blockpolymere“ – sollen neuartige Werkstoffe für Filtermaterialien hergestellt und genau charakterisiert werden.
Was für Stadtplaner ein erstrebenswertes Ziel ist, hat auch für Biochemiker seinen Reiz: Kurze Wege. Wissenschaftler von der Universität des Saarlandes um Rita Bernhardt (Biochemie) und Michael Hutter (Bioinformatik), der Heinrich-Heine-Universität Düsseldorf um Vlada Urlacher (Biochemie) sowie der Universität Leipzig um Roger Gläser (Technische Chemie) möchten gern alle für eine fortlaufende enzymatische Umwandlung nötigen Mitspieler an einem Ort zusammenbringen. Ihnen schwebt eine Art „Superenzym“ vor. Der Name des Verbundprojektes „SupraRedoxModul“ verrät: Es dreht sich um Redoxenzyme.
Die Produktion von komplexen Naturstoffen in biologischen Zellen ist eigentlich nichts Neues. Die Idee, für die Synthese der Naturstoffe Zellen mit löchriger Membranhülle zu nutzen hingegen schon. Sie steht im Zentrum des explorativen Projekts „MECAT – Multi-Enzym-Katalyse mit permeabilisierten Zellen“. Mit demTrick könnte die Produktion bisher biotechnologisch nicht herstellbarer komplexer Moleküle gelingen, ist das Team um Elmar Heinzle vom Institut für Technische Biochemie der Universität des Saarlandes überzeugt. Sie wollen das Verfahren nun für den Einsatz im Labor fitmachen.
Kleine Partikel können Mischungen von wasserliebenden und wasserabstoßenden Lösungen, sogenannte Emulsionen, stabilisieren. Diesen Effekt hat der britische Chemiker Percival Pickering 1907 beschrieben. Die Pickering-Stabilisierung wird bereits seit Jahren in der Chemie als Extraktionsverfahren eingesetzt. Geht es nach Anja Drews und Marion Ansorge-Schumacher, haben durch Pickering stabilisierte Emulsionen bald eine Zukunft in der Biotechnologie. Im Forschertandem mit dem Titel "BioPICK" wollen die Forscherinnen passende Systeme und Membranreaktoren für Pickering-Emulsionen entwickeln und so deutlich mehr Reaktionen für biotechnologische Prozesse verfügbar machen.
Die Synthese von seltenen Aminosäuren ist technisch herausfordernd und kostspielig. Der Grund: Bei den chemischen Synthesen entsteht häufig ein racemisches Gemisch, also ein Mix aus sogenannten L- und D-Aminosäuren. In Größe und der Zahl der Atome unterscheiden sich diese Geschwistermoleküle zwar nicht, dafür aber in ihrer räumlichen Anordnung, die für ihre Funktion entscheidend sind. In einem Forschertandem arbeiten Proteiningenieur Ulrich Schwaneberg von Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen und der Polymerexperte Alexander Böker vom Deutschen Wollforschungsinstitut (DWI) an speziellen Membranen, die solche racemische Gemische trennen können.
Gerade komplexe Wirkstoffmoleküle lassen sich häufig einfacher durch Mikroben herstellen als mit aufwendigen chemischen Synthesen. Mit biotechnischen Methoden lassen sich Mikroben wie nach dem Baukastenprinzip maßschneidern, um bestimmte Naturstoffe zu synthetisieren. Dieses Ziel verfolgen Silke Wenzel und Rolf Müller von der Universität des Saarlandes und Hubert Bernauer von der Firma ATG:biosynthetics GmbH in Merzhausen bei Freiburg. Die Pharmbiotec GmbH ebenfalls aus Saarbrücken stellt dazu die notwendigen analytischen Werkzeuge zur Verfügung. Im Verbundprojekt „SynBioDesign- Synthetische Biologie zum Design von Produktionssystemem für komplexe Naturstoffe“ soll mithilfe des Metabolic Engineering die Produktion komplexer Moleküle optimiert werden. Damit könnten sich künftig in den Mikroben auch Moleküle in neuen Strukturvarianten herstellen lassen, die sich bisher nicht gewinnen ließen.
Anett Werner vom Institut für Lebensmittel- und Bioverfahrenstechnik der Technischen Universität Dresden ist sich sicher, dass Metalle bei eine Vielzahl biotechnologischer Anwendungen bessere Träger für Enzyme, Farbstoffe oder ganze Zellen sind als Glas oder Keramik: „Metalle überzeugen durch ihre hohe mechanische Stabilität und ihre hohe Toleranz gegenüber Druckschwankungen. Außerdem können sie für jede Anwendung jeweils passgenau hergestellt werden.“ Ob es zu einem Siegeszug kommt, hängt auch ein bisschen von ihrem Verbundprojekt „ZMWBioKat“ ab.
Ein Team um Alexander Nesterov-Müller vom Karlsruher Institut für Technologie (KIT) will in dem Verbundprojekt „Entwicklung eines Peptidschalters“ eine Methode entwickeln, mit dem sich Protein-bindende Moleküle verlässlich, schnell und bezahlbar für viele unterschiedliche Bindungspartner finden lässt. Bei der Suche nach dem richtigen Molekül für eine spezifische Anwendung kommen sogenannte hochdichte Peptidarrays zum Einsatz. Auf einem vorbehandelten Glasträger werden mit einem Laserdrucker die wenige Mikrometer große Peptidspots aufgetragen. „Wir haben einen Prototypen entwickelt, der in einem xerographischen Verfahren rund 800 Spots pro Quadratzentimeter druckt“, berichtet Nesterov-Müller.
Für Burkhard König von der Universität Regensburg und Volker Sieber von der TU München ist Licht die ultimative erneuerbare Ressource: Überall auf der Welt ist es kostenlos als saubere Energieform verfügbar. Um Licht jedoch biochemisch verwertbar zu machen, sind sogenannte Photokatalysatoren notwendig. Weltweit wird dafür vor allem an Metallkomplexen geforscht. Ein großes Problem dieser Verbindungen ist ihre kurze Lebensdauer, ein weiteres der Bedarf an Schwermetallen wie Iridium und Ruthenium. Das bayerische Forschertandem will eine neue Generation von Photokatalysatoren entwickeln. „Wir wollen die Photokatalyse erstmals über Stunden hinweg aufrechterhalten. Außerdem suchen wir nach ‚grünen’ Alternativen, um auf die giftigen, seltenen und somit teuren Schwermetalle verzichten zu können.“
Bislang ist die Steuerung von biotechnologischen Prozessen weitgehend Erfahrungssache. Denn es fehlen Methoden, um bereits während der Produktion von Wertstoffen zu messen, ob der Prozess in die richtige Richtung läuft. Das ist wichtig, weil Produktkontaminationen ganze Produktchargen unbrauchbar machen und für große wirtschaftlich Schäden sorgen können. Das Kooperationsprojekt „Prozessüberwachung in vitro und in vivo mit Polyelektrolyt-Mikrokapseln“ soll dies nun ändern. In der Machbarkeitsstudie entwickeln der Biochemiker Sebastian Springer, der Biophysiker Mathias Winterhalter und der Biotechnologe Gerd Klöck eine universell einsetzbare Messmethode, mit der sich für den wichtige Stoffwechselprodukte und Moleküle in Kulturmedien und Zellen in Echtzeit erfassen lassen.
Bisherige biotechnische Verfahren nutzen einzelne Enzyme oder Produktionsorganismen mit speziell maßgeschneidertem Stoffwechsel, um ein bestimmtes Produkt herzustellen. Die Möglichkeit, ganze Chromosomen aus DNA zu synthetisieren, soll nun genutzt werden, um ein ringförmiges künstliches Chromosom in Hefezellen als Steuerungsmodul zu entwickeln. Im Rahmen des Projektes „Synthetische Biosysteme – von der Zelle zur Fabrikation (Cell2Fab)“ baut Katrin Messerschmidt an der Universität Potsdam eine Nachwuchsgruppe auf, um ein entsprechendes künstliches Chromosom etablieren.
Eine Echtzeit-Überwachung und -Steuerung biologischer Vorgänge in Bioprozessen ist bis heute noch nicht verwirklicht. Im Rahmen des Verbundprojektes „OptoSys – neue Optosensoren und Photoregulatoren zur Licht-vermittelten Steuerung und Analyse molekularer Systeme“ wollen Wissenschaftler der Universität Düsseldorf, der RWTH Aachen und des Forschungszentrums Jülich eine völlig neuartige, lichtbasierte Messung und Steuerung biotechnologischer Prozesse etablieren.
Angesichts des globalen Anstiegs des Klimagases Kohlendioxid sind Technologien gefragt, die das Spurengas aus der Atmosphäre entfernen. Ansätze, CO2 als Rohstoff zu nutzen, konzentrieren sich derzeit vor allem auf chemische Umwandlungen oder auf Mikroalgen, die das Gas für ihr Wachstum nutzen. Das für zunächst fünf Jahre geförderte Tandemprojekt „Analyse und Design bakterieller Enzymkaskaden zur stofflichen Verwertung von CO2“ will dagegen ungewöhnliche Enzyme aus Bakterien nutzbar machen, um Kohlendioxid in einem zellfreien Prozess in Wertstoffe umzuwandeln.
Biotechnologische Produktionsprozesse laufen heute meist als Ein-Schritt-Reaktionen in einem einzigen Bioreaktor ab. Für chemische Umsetzungen mit mehreren Reaktionsschritten ist dies oft von Nachteil. Denn die Enzyme, die die einzelnen chemischen Reaktionen beschleunigen, funktionieren oft bei ganz unterschiedlichen Bedingungen optimal. Außerdem können unerwünschte Nebenreaktionen auftreten, die die Prozesse unwirtschaftlich machen. In dem explorativen Projekt „Komparti – Kompartimentierung als Basistechnologie für neue multienzymatische Produktionsverfahren“ untersuchen Forscher um An-Ping Zeng von der TU Hamburg-Harburg in den nächsten zwei Jahren, wie sich heutigen Einschränkungen der Biosynthese durch die räumliche Annäherung oder Trennung von Enzymen auf einem Materialgerüst überwinden lässt.
Wirtschaftliche Verfahren, die das Klimagas Kohlendioxid reduzieren helfen, sind derzeit noch Mangelware. Einen Weg, das CO2 zur Wertstoffproduktion oder sogar zur Speicherung von elektrischem Strom in energiereichen chemischen Produkten zu nutzen, beschreiten Forscher jetzt im Rahmen des explorativen Projektes „Bioelektrosynthese zur Stoffproduktion aus Kohlenstoffdioxid“ im Rahmen der Fördermaßnahme Basistechnologien.
Chemische und biologische Synthesen erfordern oft ganz unterschiedliche Temperaturen und Reaktionsbedingungen. Das über drei Jahre geförderte Kooperationsprojekt „ECOX – Enzymatisch-chemokatalytische Oxidationskaskaden in der Gasphase“ zielt darauf ab, chemische und biologische Prozesse erstmals zu koppeln, um aus Methangas energie- und ressourcenschonend Ameisensäure, Methanol und Methylformiat herzustellen – wichtige Grundchemikalien für die Chemieindustrie.
Biotechnologische Produktionsprozesse sind bislang oft wenig flexibel: Häufig werden Mikroben gentechnisch so optimiert, dass sie nur unter ganz bestimmten Bedingungen eine maximale Produktausbeute liefern. Mangelnde Flexibilität ist dann problematisch, wenn die Zellen unter anderen Bedingungen produzieren als wachsen, wenn giftige Produkte entstehen oder wenn das Produkt den Prozess hemmt. Im Rahmen des Tandemprojektes „Dynamische Prozessoptimierung in der Biotechnologie“ entwickeln Katja Bettenbrock vom Max-Planck-Institut für Dynamik komplexer Systeme in Magdeburg und Andreas Kremling von der Technischen Universität München mit Hilfe von Computersimulationen gentechnisch veränderte Coli-Bakterien, deren Stoffwechsel sich während der Produktion umschalten lässt.
Verbundmaterialien aus komplex aufgebauten Biomineralen und organischen Molekülen versprechen vielfältige Anwendungen in Medizin, Lebensmittelbranche und Industrie. Bislang werden weitgehend "ungeformte" Partikel durch Ausfällen oder Vermahlen von Mineralien oder aus Lagerstätten von Kieselalgen gewonnen. In dem Kooperationsprojekt ZeBiCa2 geht es erstmals darum, biotechnologische Produktionsverfahren zu entwickeln, um die Mineralisierung hochkomplexer dreidimensionaler Kalkstrukturen durch die Meeresalge Emiliania huxleyi biotechnologisch zu steuern und industriell zu nutzen.