Initiative Biotechnologie 2020+: Mit Großprojekten auf Kurs
Im Rahmen der "Initiative Biotechnologie 2020+" arbeiten die Forschungsorganisationen an millionenschwere Großprojekten - zu Themen wie Synthetische Biologie oder druckbare Biotechnik.
Im Rahmen der "Initiative Biotechnologie 2020+" arbeiten die Forschungsorganisationen an millionenschwere Großprojekten - zu Themen wie Synthetische Biologie oder druckbare Biotechnik.
Ein neuartiges Nano-Sensorkonzept, das auf fluoreszierenden Bakterienproteinen beruht, kann schnell und einfach Arznei- und Schwermetallreste in Wasser nachweisen. Daran forschen deutsche Wissenschaftler-Teams im Verbundprojekt Aptasens.
Biochemische Prozesse sind äußerst komplex. Ein bisher noch wenig betrachteter Aspekt dieser Komplexität: biochemische Prozesse laufen in der Zelle in einem dreidimensionalen Raum ab und Moleküle selbst haben eine räumliche Gestalt. Der Jülicher Forscher Eric von Lieres möchte biochemische Prozesse in 3D auf modernen Computerarchitekturen simulieren. Die entwickelten Simulationsmodelle sollen dabei helfen, biotechnische Reaktionssysteme zu optimieren.
In der Biotechnologie sind Enzyme als Biokatalysatoren im Einsatz, die Synthese-Chemie wiederum setzt oftmals auf Chemokatalysatoren. Doch bisher gibt es kaum Fälle, in denen chemo- und biokatalytische Reaktionen erfolgreich kombiniert wurden. Diese enge Verzahnung der beiden „Katalyse-Welten“ hat sich ein Forschertandem um den Bielefelder Chemiker Harald Gröger und den Enzymtechnologen Werner Hummel von der Universität Düsseldorf vorgenommen. Das Forschertandem will das Konzept der chemoenzymatischen Mehrstufen-Eintopfsynthesen vorantreiben, um damit Spezial- oder Feinchemikalien herzustellen.
Stofftrennung ist ein wichtiger Arbeitsschritt in der biotechnologischen Praxis. Doch die konventionellen Methoden sind oft aufwändig, kostenintensiv und schlecht skalierbar. Der Forscher Thomas Burg vom Max-Planck-Institut für biophysikalische Chemie in Göttingen will mit Hilfe neuer Nanofabrikationsmethoden sogenannte biologische Hydrogele zur Lösung dieses Problems nutzbar machen. Hydrogele wirken in Zellen und Geweben oft als hochselektive Barrieren, welche einen kontrollierten Transport von Molekülen ermöglichen. Burg möchte solche Gele in sehr dünne nanoporöse Feststoffmembranen integrieren. Dazu entwickelt er eine Mikrofluidikplattform, mit der sich die Funktionsweise der Gele untersuchen und künftig einmal Stoffgemische in zellfreien Produktionssystemen aufreinigen lassen.
Robin Ghosh will Enzyme einsperren: „Im Inneren von Mikrokapseln sollen sie aus einem Ausgangsprodukt in mehreren Schritten das gewünschte Endprodukt herstellen.“ Das Besondere an dem von Ghosh koordinierten Verbundprojekt „EnzCaps“ ist die Umgebung, in der die Reaktionen stattfinden sollen: organische Lösungsmittel. Das württembergische Team will so das Anwendungsspektrum der enzymatischen Biotechnologie erweitern. Viele wichtige Ausgangs- und Endprodukte sind nicht in wässriger Umgebung löslich. Enzymreaktionen in organischen Lösungsmitteln sollen hier einen Ausweg bieten. Doch bis es soweit ist, müssen zunächst einmal Enzyme entwickelt werden, die auch in der für sie ungewohnten Umgebung zufriedenstellend arbeiten.
In der Bioanalytik werden – etwa in Trenn- und Affinitätssäulen – meist dichtgepackte Kügelchen eingesetzt. Ein anderes Konzept stellen die Monolithen dar, das sind homogene polymere Matrix-Strukturen, die von winzigen Poren durchsetzt sind. Ein Verbundprojekt namens „Bioliths“ um den Stuttgarter Polymerchemiker Michael Buchmeiser und den Biotechnologen Bernhard Hauer möchte ein innovatives monolithisches Trägermaterial entwickeln, das sich einmal als Reaktor für bestimmte Enzyme eignen soll. Hierbei sollen die Enzyme jedoch nicht in wässriger Umgebung arbeiten, sondern in ionischen Flüssigkeiten. Davon versprechen sich nicht nur die Forscher aus Stuttgart viel Potenzial für neue Produkte. Auch das Geesthachter Bioanalytik-Unternehmen GALAB Laboratories GmbH ist an dem Projekt beteiligt.
Das Konzept der mikrobiellen Brennstoffzelle funktioniert so: Bakterien bauen energiereiche Substanzen ab und die entstehenden Elektronen können an eine Elektrode abgegeben werden – Strom wird gewonnen. Denkbar ist auch der umgekehrte Fall: Werden geeignete Bakterien mit elektrischer Energie gespeist, werden sie zu zellulären Fabriken, die aus der Zutat Kohlendioxid interessante Chemikalien oder Energieträger herstellen können. „Mikrobielle Elektrosynthesen“ heißt dieses Konzept, dem sich ein Forschertandem des gemeinnützigen DECHEMA-Forschungsinstituts (DFI) in Frankfurt widmen will. Das interdisziplinären Wissenschaftlerteam um Dirk Holtmann und Klaus-Michael Mangold will dazu in der Natur nach geeigneten Mikroben fahnden oder sie molekularbiologisch für die Elektrosynthese fit machen. Zudem wollen die beiden Kollegen geeignete elektrochemische Reaktorsysteme entwickeln.
Monooxygenasen sind wahre Alleskönner. Norbert Sträter, beteiligt am Verbundprojekt „Stromgetriebene Redoxenzyme für Hydroxylierungsreaktionen“, ist von der Unentbehrlichkeit dieser Proteine überzeugt: „Solche Redoxenzyme – zu denen vor allem die Cytochrome P450 gehören – werden zum Beispiel bei der biotechnologischen Synthese von Feinchemikalien als auch von Pharmazeutika eingesetzt.“ Chemisch gesehenen wird genau ein Sauerstoffatom eines Sauerstoffmoleküls auf das gewünschte Substrat übertragen, das zweite Sauerstoffatom wird zu Wasser reduziert. Die für diese Reaktion notwendigen Elektronen werden bisher vor allem über Reduktionsäquivalente wie NADPH bereitgestellt. Aber ausgerechnet für die Herstellung beziehungsweise das Recyceln dieser Moleküle gibt es noch keine biotechnologisch sinnvolle Lösung.
Die biotechnologische Herstellung von Grundchemikalien ist deshalb schwierig, weil entsprechende Enzyme oft nicht verfügbar sind oder nicht die für ein wirtschaftliches Verfahren notwendigen Aktivitäten aufweisen. Ein hohes Anwendungspotenzial existiert für Oxidationen, etwa wenn es darum geht C-H Bindungen selektiv zu oxidieren. Forscher aus Stuttgart und Reutlingen wollen in dem Tandem-Projekt „ElektroZym“ ein Cytochrom P450- Enzym auf chemische Umwandlungsschritte im Industriemaßstab trimmen. Dazu sollen die Proteine mit Carbon-Nanoröhrchen (CNT) gekoppelt werden.
Enzymreaktionen durch Licht antreiben, Sonnenenergie in biochemische Wertstoffe umwandeln – das ist das Ziel des Forschertandems um Fred Lisdat von Technischen Hochschule Wildau und die Biophysiker Heiko Lokstein und Athina Zouni von der TU Berlin. Die Forscher wollen die Sonnenenergie nutzen, um biokatalytische Prozesse zu steuern. Dazu wollen sie eine sogenannte Photobioelektroden-Struktur entwickeln. Sie soll eine durch Licht aktivierbare Elektrode mit einem Enzymsystem kombinieren. Die Tandempartner bringen Expertisen aus der Photosynthese-Forschung, Elektrochemie und Bionanotechnologie zusammen.
Sellerie kann bei Allergikern schwerwiegende Reaktionen auslösen. Immunologen aus Darmstadt und Karlsruhe entwickeln einen Schnelltest für Sellerie-Allergene, der Kontaminationen in Lebensmitteln zuverlässig aufspüren kann.
Um Eiweißmoleküle mit neuen Eigenschaften zu entwickeln, setzen Biotechnologen auf die sogenannte gelenkte Evolution. Doch wie lassen sich riesige Bibliotheken mit Enzymvarianten schneller nach interessanten Molekülen durchmustern? Ein Team um Ulrich Schwaneberg von der RWTH Aachen arbeitet an einem Verfahren, mit der sich die Suche beschleunigen lässt. Ziel des explorativen Projekts mit dem Titel „Zellfreie durchflusszytometrie-basierte in vitro Vesikel-Durchmusterungstechnologie für eine gelenkte Evolutionsrunde pro Tag“: In 24 Stunden eine Evolutionsrunde abschließen und die daraus hervorgegangene Enzyme vollständig durchmustern.
In der Vergangenheit wurden viele technisch nutzbare Biomoleküle nach dem Prinzip von Versuch und Irrtum hergestellt. Der rasante Anstieg in der Rechenleistung von Computern erlaubt es heute, solche Moleküle mit Modellen zu simulieren und Veränderungen gezielt zu planen. Die Herangehensweise des rationalen Designs wollen auch Sonja Berensmeier von der Technischen Universität München und Wolfgang Wenzel vom Karlsruher Institut für Technologie (KIT) für ihr gemeinsames Forschungsprojekt nutzen. Unter dem Titel „Rationale Entwicklung von Peptid-Oberflächen-Interaktionen“ arbeitet das Forschertandem künftig auf dieses Ziel hin.
Heterosis heißt das Phänomen, das Züchter nutzen, um den Ertrag von Nutzpflanzen deutlich zu steigern. In dem Projekt HYBWHEAT wollen Forscher aus Gatersleben Weizen mit gentechnischen Tricks für die Hybridzüchtung fit machen.
In der Zelle bekommen viele neu entstehende Proteine erst im Golgi-Apparat den letzten Schliff. In diesem Stapel von membranumschlossenen Räumen werden die Proteine modifiziert: Mal wird ein Zucker- oder Fettsäurerest angehängt, mal das Protein phosphoryliert. Da vielen biotechnologisch hergestellten Eiweißmolekülen dieser Feinschliff fehlt, wollen Frank Rosenau aus Ulm und seine Mitstreiter vom Verbundprojekt SeleKomM den Golgi-Apparat nachahmen – in Form eines Bioreaktors. Dafür forschen sie zum Beispiel an technischen Membranen, die anders als biologische Membranen aus Kunststoffen hergestellt werden.
Zwei Jahre bei der Züchtung neuer Maissorten sparen – das ist das Ziel von Pflanzenforschern aus Hohenheim. Durch statistische Prognosen anhand genetischer Daten wollen die Wissenschaftler besonders geeignete Elternpaare ermitteln, miteinander kreuzen und so den Züchtungsprozess verkürzen. Dabei soll ein uraltes Mysterium der Pflanzenzüchtung enträtselt werden: Der Heterosis-Effekt, der Nachkommen bestimmter Kreuzungen besonders kräftig und ertragreich gedeihen lässt.
Mit der Förderinitiative BioFuture hat das BMBF jungen Nachwuchsforschern attraktive Karriereperspektiven geboten. Petra Schwille, heute Direktorin am Max-Planck-Institut für Biochemie, gehörte 1999 zu den Preisträgern.
In Straubing hat der Chemiekonzern Clariant im Juli 2012 eine Demonstrationsanlage zur Herstellung von Bioethanol aus Stroh und anderen Feldabfällen in Betrieb genommen. Es ist die bis dato größte deutsche Anlage zur Herstellung von Biokraftstoffen der zweiten Generation.
Eiweiße gezielt für die Industrie herstellen, mit zellfreien Systemen – mit diesem Ziel war das Verbundprojekt „Biomoleküle vom Band – Zellfreie Bioproduktion“ der Fraunhofer Gesellschaft als erste Maßnahme im Strategieprozess „Biotechnologie 2020+“ im Jahr 2011 gestartet. Am 14. März haben sich nun alle beteiligten Forscher des Konsortiums zum jährlichen Erfahrungsaustausch in Berlin getroffen. Fazit: Immer mehr kristallisiert sich inzwischen heraus, wo künftig weiterer Forschungsbedarf besteht – etwa bei der Etablierung von Bioreaktoren für eine zellfreie Produktion.