Aktuelle Veranstaltungen

An oil slick measuring 10,000 square metres endangered marine animals, sea birds and costal inhabitants. Until now, oil spills have been cleaned up by burning the oil, or using dispersion materials, which decompose the oil with the use of chemicals. These methods have been controversial for a long time because they equally pollute the environment. According to environmental scientists, the dispersant chemicals used can cause genetic mutation and cancer, adding to the toxicity of the spill. 

Water ferns' oil absorbing abilities

Scientists based at Karlsruhe Institute of Technology's Institute of Microstructure Technology (KIT) have now found an environmentally friendly solution to clean up oil-contaminated waters. Reporting their latest results in the journal Bioinspiration & Biomimetics, the team of scientists, led by material researcher Claudia Zeiger, said they were inspired by nature. In their study, the researchers focused on several water plants including four species of aquatic ferns – Salvinia – which are well known for their oil-absorbing abilities, making the leaves water repellent. “We already knew that the leaves of these plants repel water, but for the first time now, we have studied their capacity to absorb oil,” explains Zeiger. Together with colleagues from the University of Bonn, the team discovered the secret behind the oil absorption. The answer lies in the oil-binding properties of the hair-like microstructures called trichomes on the leaf surface.

Microhairs shaped like eggbeaters

Tiny little outgrowths called trichomes, which are similar to hairs and between 0,3 and 2,5 millimetres long, cover the surface of the Salvinia. When compared to different varieties of Salvinia, the scientists established that it was not the leaves with the longest hairs that absorbed the most oil, but the oil-binding ability is determined by the shape of the microhairs' ends. “From our results we now know that the shape of the hair ends is important in supporting the oil/air interface to ensure maximum oil absorption and retention capabilities," Zeiger stresses. The type of water fern that absorbed most of the oil is called Salvinia molesta. It is native to Brazil and its microhairs look like miniature eggbeaters and are joined together at the ends. Salvinia was able to absorb most of the oil. Furthermore, tests have shown that the water ferns are able to absorb oil in a matter of seconds.

The aquatic plants, which are native to the tropics and subtropics is now also increasingly found in European waters. For some, the plants have become a plague because they spread rapidly. This is another point why the Karlsruhe researchers are in favour of using the water plants as oil absorbers. They are not only fast and environmentally friendly, but also a cost-effective alternative to chemical cleaning of oil-contaminated waters. “The plants could be used for example in lakes where oil has accidentally entered the lake,” explains Zeiger.

Natural model for plastic films

In order to clean up oil spills, the Karlsruhe researchers now want to transfer their newly acquired knowledge on the Salvinia aquatic plants to a bio-inspired plastic film technology developed by them. The scientists have developed a synthetic version of these hairy surfaces and called it nanofur. The plastic nanofur is made up of microhairs on the film’s surface. It mimics the water-repellent and oil-absorbing effect of Salvinia to separate the oil and water.

Mit einer Geschäftsidee im Kopf ist der Mikrobiologe Ulrich Rabausch zur Innovationsakademie Biotechnologie gekommen. Dort hat er Partner gefunden, mit denen er das Wagnis Unternehmertum in die Realität umsetzt: Mit Hilfe einer Millionenförderung im Rahmen des GO-Bio-Wettbewerbs des Bundesministeriums für Bildung und Forschung.

Es ist nicht das erste Unternehmen, das Ulrich Rabausch in Angriff nimmt. Aber es ist das erste, dem der Mikrobiologe von der Universität Hamburg seine professionelle Karriere widmet. Es geht um  die Herstellung von gesundheitsfördernden, kosmetisch aktiven Inhaltsstoffen für die Kosmetikindustrie. „Das Unternehmerische fand ich schon immer spannend“, sagt Rabausch, der sich mit der Gründung von FrutAmazon bereits in seinen Studententagen am Aufbau einer Firma probiert hat. Dieses Unternehmen ist für ihn inzwischen Geschichte, doch das Interesse am Kaufmännischen blieb, und er ergänzte sein Mikrobiologie-Studium um das Nebenfach Betriebswirtschaftlehre. Als er im Sommer 2012 zufällig auf eine Annonce für die dritte „Innovationsakademie Biotechnologie“ stößt, ist er sofort begeistert: „Das Veranstaltungsformat klang vielversprechend, das wollte ich ausprobieren.“

Interdisziplinarität als Glücksfall

Damals bot die ehemalige Abfertigungshalle des Flughafen Tempelhof die Kulisse für die dritte Auflage der vom Bundesministerium für Bildung und Forschung (BMBF) ins Leben gerufenen Veranstaltungsreihe, die jedes Jahr zur Gründerwoche im Herbst stattfindet (mehr...). Als Teilnehmer kommen junge Naturwissenschaftler ebenso in Frage wie gestandene Unternehmer, Produktdesigner oder Marketingexperten. Gesucht werden Menschen mit Ideen und dem Interesse an der Gründung einer Firma. Für Rabausch erweist sich die Interdisziplinarität der Innovationsakademie als Glücksfall. „Im Laufe der zwei Tage habe ich Partner mit kaufmännischer Expertise sowie Branchenexperten gefunden, die mit mir gemeinsam den Weg der Firmengründung gehen wollten“, erinnert sich Rabausch, der damals eine Idee, die aus seiner Doktorarbeit resultierte, mit auf die Veranstaltung brachte. Ohne die Innovationsakademie, ohne die Unterstützung von Mitgründern hätte er diese nicht so entschlossen in Richtung Unternehmertum verfolgt, da ist er sich sicher. „Wir hatten vor Ort eine super Gemeinschaft, die sehr vielseitig zusammengesetzt war: Biowissenschaftler auf der einen Seite, aber auch alte Hasen mit Marktwissen und Leute aus dem Marketing.“ Im Rahmen des interaktiven Kreativitätsparcours der Innovationsakademie wurde die Geschäftsidee von allen Seiten unter die Lupe genommen. Er hatte es im Labor geschafft, Bakterienzellen so umzuprogrammieren, dass diese im Bioreaktor verschiedene Enzyme herstellen können, mit deren Hilfe Polyphenole maßgeschneidert mit unterschiedlichen Zuckerresten versehen werden können.

It is not the first company that Ulrich Rabausch had made a start on, but it is the first to which the microbiologist from the University of Hamburg has devoted his professional career. The company is occupied with the production of health-promoting, cosmetically active ingredients for the cosmetics industry. “I’ve always found the business side of things to be exciting,” says Rabausch, who already in his student days dipped his toe into business founding with the creation of the firm FrutAmazon. The company is now history, but the interest in commerce remained, leading him to supplement his studies in microbiology with a minor in Business Administration. When he chanced upon an ad for the third ‘Innovation Academy biotechnology’ in the summer of 2012, he was immediately convinced: “The format of the event sounded promising. I wanted to give it a try.”

The fluke of interdisciplinarity

The former departure hall of Berlin’s Tempelhof Airport served as the setting for the third edition of this series of events from the Federal Ministry of Education and Research (BMBF), which takes place every year as part of Entrepreneurship Week. Young and upcoming scientists as well as established entrepreneurs, product designers and marketing experts can all participate. The event is aimed in particular at people with ideas who are interested in starting a company. For Rabausch, the interdisciplinary nature of the Innovation Academy was something of a stroke of luck. “Over those two days I found partners with commercial expertise as well as industry experts who were willing to found a company together with me,” says Rabausch of the idea, which originally emerged in the course of his doctoral thesis. He is sure that had it not been for the Innovation Academy and for the support of co-founders, he would not have pursued this path of entrepreneurship quite as vigorously. “We came together as a very versatile community: Bioscientists alongside old hands with strong market knowledge, as well as people from marketing.”As part of the interactive creativity course from the Innovation Academy, the business idea was placed under the microscope from all angles. Back in the laboratory, Rabausch had succeeded in reprogramming bacteria cells so that they could produce various enzymes in the bioreactor. With the assistance of polyphenols, these could then be customised with various surface sugars.

Researchers at the Max-Plank Institute of Molecular Plant Physiology (MPI-MP) have now found a way to produce the natural compounds found in soya beans and grapes en mass to be used in medicine. The scientists used the tomato as a natural medicine factory. As the team reported in the journal Nature (2015, online publication), with the help of a genetic trick, the scientists succeeded in taking the gene from the other plants and inserting it into the tomatoes, which increased the gene hundredfold.

Many fruits and vegetables such as oranges, grapes, tomatoes and spinach contain natural compounds that protect against diseases or can even heal. Tomatoes can reduce the risk of a stroke and when cooked can protect against sunburn and strengthen the structure of the skin. The substance responsible for this is lycopene. However, the fruit only contains a small amount of lycopene, so that huge amounts of tomatoes need to be eaten to meet the daily requirements and achieve the beneficial effect.

Natural substances used as medicine

These relevant substances in plants are called secondary metabolites and it's the scientists’ goal at the Max-Plank Institute of Molecular Plant Physiology (MPI-MP) to apply them in medicines. The team around Alisdair Fernie from MPI-MP and Cathie Martins from the John Innes Centre in England have found a way to produce these natural substances in large quantities. And to do this they used the tomato plant. The plant can produce 500 tonnes of fruit per hectare making it one of the most productive crops, making it particularly suitable as a bio-factory for plant substances. 

But the researchers didn’t go for lycopene from the tomato plant. Instead, they chose the equally medically relevant substances resveratrol and genistein for their experiments. Genistein is a secondary metabolite found in soya beans that can prevent various types of cancers, such as breast cancer.

Integrated genetic switches

To stimulate the production of both substances in the tomatoes, the researchers have used a genetic trick: they planted the gene AtMYB12 from the model plant Arabidopsis thaliana in the tomatoes. AtMYB12 is responsible for the production of the AtMYB12 protein. The AtMYB12 encodes a protein that binds to essential genes of phytochemicals and boosts their production. “This protein works like a switch, which can turn the production of secondary plant substances on or off,” describes Alisdair Fernie, research group leader at the MPI MP in Potsdam.

Tomatoes as bio-factories

Afterwards, the selected nutrients were introduced together with other genes for the production of enzymes from soya beans and grapes in the tomatoes, which allow the production of the compounds resveratrol and genistein. The result: once equipped with the compounds (Phenylpropanoids), tomato plants are enriched with more than a hundred times the amount of resveratrol than grapes. This is also the case with genistein. The content of genistein in the tomatoes also exceeds that of soya products. The reason for the increase in the production of these substances is the introduction of a completely new metabolic pathway that has established itself in the tomato plants and kicks off the production of the natural substances. Using tomato plants as bio-factories has an economical advantage too. Instead of a laborious synthetic process in the laboratory, the natural substances can simply be extracted from the pressed juice of the tomato and the substrate used for the production of pharmaceuticals in medicine. The Max-Planck researchers are convinced that this technique could also be applied to other compounds to be used in medicine.

© biooekonomie.de/bb

Researchers from the Fraunhofer Institute for Biomedical Engineering IBMT Biomedical from the town of Sulzbach have discovered that alginate appears to be the ideal breeding ground for the propagation of pluripotent stem cells. The two types of algae are known as Lessonia trabeculata and Lessonia nigrescens and grow on Chile’s coasts. For the drug tests of the future, the pharma industry and medical research needs large quantities of pluripotent stem cells.

These stem cells have the potential to transform themselves into any kind of somatic cell, such as the cells of inner organs. After tests, the scientists at the Fraunhofer IBMT are convinced that the microorganisms supporting skeleton – the alginate – is the perfect breeding ground to cultivate stem cells in the laboratory. The IBMT scientists from Sulzbach developed the production process as well as the technology platform together with colleagues in Chile and the Great Britain.

In a laboratory operated by IBMT and Fraunhofer Chile at UCN University in Coquimbo, the seaweed is individually peeled, shredded, and completely dried. This is all done within 24 hours to prevent the material from becoming contaminated. The seaweed granulate is then exported to Germany, where IBMT scientists separate out the alginate in the institute’s cleanroom. After this process, it is available in liquid form and can be shaped into beads using a strong jet of air. The beads are now more stable in a barium bath, as barium tends to remain in the seaweed mass. “The trick is to make the material stable, but not too hard,” says Prof. Zimmermann, Managing Head of Fraunhofer IBMT. “Cells feel especially at home in elastic 3D environments such as are found inside the body. It’s precisely this environment that can be simulated perfectly using alginate,” he explains further.At the same time, the researchers introduce active ingredients into the alginate and release them in a controlled manner – monitoring them constantly. Examples of such active ingredients are substances that transform pluripotent stem cells into certain somatic cells. By mixing the two types of algae they could also determine the elasticity and size of the alginate.

Algae skeletons are the petri dish for stem cell cultivation

The alginate is coated with proteins and placed in a bioreactor in an environment of optimum temperature and CO2 and continuously stirred. The researchers concluded: each of the 200 micrometre beads performs the role of a Petri dish. The stem cells grow over the alginate in the containers in three to seven days, propagating as they do so. Because the alginate volumes could be increased without problems in the bioreactors, pluripotent stem cells can be grown in greater quantities and in smaller spaces.

Alginate can influence cell growth

“The stem cells grow better on our alginate – and particularly well in automated bioreactors. They differentiate better into the desired somatic cells than on the plastic substrates generally used today,” explains Prof. Zimmermann. Therefore, he is convinced that in the future the algae skeleton will not only function as a passive breeding ground but also will actively influence the growth of the stem cells. Currently, the cell propagation is validated in the laboratories of British pharmaceutical companies. British pharma companies are currently validating the process in their laboratories. The aim is to show that with the process stable pluripotent stem cells can be produced. “We have already been able to prove this for many individual stem cells at the institute,” says Zimmermann.

Jörg Riesmeier ist seit 2010 Geschäftsführer des Kölner Biotechnologie-Unternehmens Direvo IBT. Als Firmenlenker hat sich der 48-jährige Biochemiker allerdings schon viel früher beweisen können.  Nach Studium und Blitz-Promotion  („zwei Jahre und zehn Tage“) in Berlin zählte er 2006 zu den Mitgründern des Potsdamer Pflanzenbiotech-Start-ups Planttec und wurde dessen Geschäftsführer. Nach einem mehrjährigen Intermezzo als Fondsmanager in den USA hat er in den vergangenen Jahren die auf industrielle Biotechnologie spezialisierte Direvo auf neuen Kurs gebracht.

Mitte der 1990er Jahre. Jörg Riesmeier ist mit gerade einmal 32 Jahren zum Geschäftsführer des kleinen Start-ups Planttec gemacht worden. Am Anfang läuft nicht alles glatt und er ist „mehr als einmal“ über die Haltung seiner Geschäftspartner verärgert: „Nur weil die eine Visitenkarte mit dem Namen einer großen deutschen Firma präsentieren, haben sie die Weisheit nicht für sich gepachtet!“

Rasanter Aufstieg

Mit der Zeit verschafft sich Riesmeier Respekt – auch durch „Tacheles reden im Hinterzimmer“. Ein bisschen war der Niedersachse zu seinem Job gekommen wie die Jungfrau zum Kinde. Am Max-Planck-Institut (MPI) für molekulare Pflanzenphysiologie in Potsdam-Golm arbeitete das Team um Lothar Willmitzer auch an stark anwendungsbezogenen Projekten. Das passte nicht ins Konzept des Institutes. Abbruch oder Ausgründung? Biochemiker Riesmeier hatte bereits bei Willmitzer promoviert, folgte ihm mit 28 als Juniorgruppenleiter ans Institut für Genbiologische Forschung Berlin und arbeitete nach dessen Schließung am MPI an seiner Habilitation. Bei einer solchen Karriere im Eiltempo war es eigentlich nur logisch, dass ihm die Leitung der neu gegründeten Planttec GmbH angetragen wurde. Riesmeier traute sich die Aufgabe zu und baute die Potsdamer Firma an der Schnittstelle von grüner und weißer Biotechnologie auf. 2000 wurde Planttec von Agrevo übernommen, bald darauf in Aventis Cropscience umgetauft und schließlich 2002 an die Bayer AG verkauft. Während dieser Zeit erweiterte Riesmeier den Standort auf der Insel Hermannswerder auf 70 Mitarbeiter. Ende 2003 wurde dann die Rechtsform der Firma geändert - für Riesmeier gab es damit keine adäquate Aufgabe mehr. Bayer erhielt den Standort als Bayer Bioscience bis 2008, dann wurden die Projekte in die USA und Belgien überführt und das Gewächshaus in Potsdam verlassen.

Geniales kalifornisches Flair

Damals wurde aus einer Tendenz ein Fakt: „Die Grüne Gentechnik war in Deutschland gescheitert“, sagt Riesmeier rückblickend. Er selbst ging als Fondsmanager mit seiner Familie nach Kalifornien. Eine richtige Entscheidung: „Das Flair an der Westküste war genial. Und erst das Geschäftsklima – wie für mich gemacht!“ Vom Pioniergeist beflügelt, wartete die nächste Herausforderung in Boston. Von dort organisierte er den niederländischen Fonds LSP Bioventures. Das Geld kam von Syngenta, die sich so frühzeitig mit cleveren Ideen aus der industriellen Biotechnologie versorgen wollte. Mit Erfolg: Nach dem Anfangsinvestment - vermittelt durch Riesmeier  – kauften die Schweizer 2012 eine Firma „irgendwo im tiefen Hinterland Floridas“ für satte 113 Millionen US-Dollar. Zu diesem Zeitpunkt war Tausendsassa Riesmeier aber schon wieder zurück in Deutschland. Grund: Die weltweit äußerst angespannte Finanz-Situation und die damit verbundene Zurückhaltung von Geldgebern. „Ab 2008 wurde die Lage grässlich. Das Investorengeschäft hat überhaupt keinen Spaß mehr gemacht“Enzyme steuern den überwiegenden Teil der biochemischen Reaktionen. Wie das genau funktioniert, erklärt Jan Wolkenhauer in der neuen Kreidezeit.Quelle: biotechnologie.tv, resümiert Riesmeier.

Direvo komplett umgekrempelt

Wie so oft spielte ihm dann der Zufall in die Hände. Die Direvo Industrial Biotechnology (IBT) GmbH in Köln suchte gerade einen neuen Geschäftsführer. Nach dem Herauslösen der Sparte industrielle Biotechnologie aus der Direvo Biotech AG war der Pharma-Arm gerade in der Bayer AG aufgegangen. Ex-Chef Thomas von Rüden übernahm kurzzeitig das Ruder der Direvo IBT – und reaktivierte mit Riesmeier einen Kontakt aus früheren Tagen. Der kannte die Firma bereits: „Wir bei LSP hatten Direvo zwar beobachtet, konnten uns aber nicht zu einem Investment durchringen.“ Damit wusste der frisch gebackene Chef natürlich auch, dass ihn gehörig Arbeit in Köln erwartete: „Wir haben die Firma komplett umgekrempelt.“ Drei Jahre später steht sie mit 30 Angestellten und zwei Hauptprodukten gut da. Die BluZy-Enzyme werten als Futtermittel verwendete Abfälle der Bioethanolproduktion auf. Die BluCon-Plattform garantiert die Umwandlung organischer Abfälle in wirtschaftlich verwertbare Einzelbausteine wie Milchsäure.

Experimente in der Küche

Die Riesmeiers wohnen jetzt wieder in Berlin: „Nach der Zeit in den USA wollten wir der Kinder wegen wieder auf bekanntes Terrain.“ Wochentags nächtigt Riesmeier in einer kleinen Mietwohnung in Köln. Die Wochenenden verbringt der laut Eigenaussage „experimentierfreudige Hobbykoch“ mit seiner Frau und den sechs und elf Jahre alten Söhnen in Berlin-Zehlendorf. Obwohl sie noch nicht so recht wissen, was der Papa macht, wollen beide Erfinder werden.  

Autor: Martin Laqua

Since 2010, Jörg Riesmeier’s first responsibility has been as managing director of the Cologne-based biotech company Direvo IBT. However, the 48-year-old biochemist already established his credentials as a company head some years ago. In 2006, after finishing his degree studies and completing a lightning-fast doctorate in Berlin (“two years and ten days”), he was one of the founders of the Potsdam-based plant biotech start-up PlantTec, as well as its first managing director.

It’s the mid-1990s. At the tender age of 32, Jörg Riesmeier has just been made CEO of the small start-up PlantTec. Not everything goes smoothly in these early days, and “more than once” he is enraged by attitudes of his business partners: “Just because they could present a business card embossed with the name of a large German company, they thought they had a monopoly on wisdom!”

A rapid rise

Over time, gives Riesmeier managed to gain the respect of his peers, also as a result of “some plain talking outside of the meeting rooms.” There was an element of fortune in how the native of Lower Saxony arrived at his post. At the Max Planck Institute (MPI) for Molecular Plant Physiology in Potsdam-Golm, Lothar Willmitzer and his team (including Riesmeier) were working hard on strongly application-oriented projects. This did not fit into the general concept of the institute. So, should the work be binned or spun-off? The biochemist Riesmeier had already earned a doctorate under Willmitzer’s supervision, and at the age of 28 had followed him to the Institute of Gene-Biological Research in Berlin in the role as a junior group leader. When the institute closed down, he remained in the capital to work on his doctorate, this time at the MPI. With a career that was progressing at such a tempo, it seemed only logical that he would be offered the top position at the newly founded PlantTec GmbH. Riesmeier was happy to step up to the task, and began to build up the Potsdam-based company at the intersection between green and white biotechnology. In 2000, PlantTec was acquired by Agrevo, who soon renamed it Aventis CropScience, before selling it again to Bayer AG in 2002. During this time, Riesmeier expanded the company’s Hermannswerder Island location to 70 employees. The legal form of the company was changed at the end of 2003 – for Riesmeier, there was little left to do that offered him the necessary challenge. Bayer took over the location as Bayer Bioscience up to 2008, after which the projects were transferred to the US and Belgium, leaving the greenhouses in Potsdam empty.

Easy Californian flair

Back then, there was a tendency in the sector that was taken as fact: “Green genetic engineering was deemed to have failed in Germany,” says Riesmeier. During his role as fund manager, he even moved his family to California. It was the right decision: “There’s a fantastic vibe on the west coast. And the business climate – it was made for me!” Inspired by the pioneering spirit, the next challenge was already waiting in Boston, namely the organisation of the Dutch LSP BioVentures fund. The money came from Syngenta, which was hoping to be early to cash in on the clever ideas emerging from industrial biotechnology. It was a successful approach. After the initial investment – mediated by Riesmeier – in 2012 the Swiss Syngenta purchased a company “somewhere deep in the hinterland of Florida” for a whopping $113 million. By this time, the multi-talented Riesmeier was already back in Germany. The reason he gives for this is the extremely weak global financial situation and the consequent reluctance among the usual financial backers to part with their cash. “By 2008, the situation was dire. The investor business was no fun anymore,” remembers Riesmeier.

A revolution at Direvo

As is so often the case, there was a strong element of luck. Direvo Industrial Biotechnology (IBT) GmbH in Cologne was on the lookout for a new CEO. The pharmaceutical was flourishing at Bayer after the hiving-off of the industrial biotechnology division from Direvo Biotech AG.  Ex-head Thomas von Rüden briefly took over the helm at Direvo IBT and re-established contact with Riesmeier, who he knew from earlier days. Riesmeier was already familiar with the company: “We had had an eye on Direvo at LSP, but were not yet minded to make an investment.” Of course, the newly crowned head was also aware of this, and knew that there was work ahead of him in Cologne: “We totally revamped the company.” Three years later, the firm is doing very well and has 30 employees and two main products on its books. BluZy enzymes utilise as feed the waste produced by bioethanol production, while the BluCon platform guarantees the conversion of organic waste into economically viable individual building blocks such as lactic acid.

Weekend experiments only in the kitchen Berlin is now home once again for the Riesmeiers family. “After our stretch in the US we wanted to be on familiar territory again, above all for the kids.” During the week, Riesmeier stays in a small rented apartment in Cologne. The weekends are often spent, in his own words, as an “experimental amateur cook”. His testers are Mrs. Riesmeier and his six and eleven-year-old sons in Berlin-Zehlendorf. Although they can’t quite explain what it is that dad does during the week, they have both declared that they also want to be inventors when they grow up.

Author: Martin Laqua

Seit ihrer Entwicklung vor mehr als 30 Jahren hat sich die Polymerase-Kettenreaktion (PCR) als eine der wichtigsten Standardmethoden der Biotechnologie behauptet. Mit ihrer Hilfe lässen sich einzelne oder wenige DNA-Abschnitte gezielt vermehrt. Finanziert durch das Bundesministerium für Bildung und Forschung (BMBF) hat die Firma GNA Biosolutions in einem Projekt der Förderinitiative KMU-innovativ ein neues Turbo-Verfahren entwickelt: Der Schritt der DNA-Vervielfältigung wurde massiv beschleunigt, statt Stunden braucht die sogenannte Laser-PCR nur noch rund 15 Minuten.

Im Jahr 1983 schlug die Geburtstunde der Polymerasekettenreaktion. An dem Prinzip der Methode hat sich in den vergangenen Jahrzehnten kaum etwas geändert: Durch eine geschickte Temperaturführung lässt sich DNA mit bestimmten molekularen Werkzeugen vervielfältigen. „Obwohl eigentlich nur ein paar wenige DNA-Moleküle aufgeheizt werden sollen, musste man bisher immer die gesamte Reaktionsflüssigkeit erwärmen", sagt Joachim Stehr, Forschungschef der Biotech-Firma GNA Biosolutions GmbH. Auch wenn das Aufwärmen und Abkühlen in der klassischen PCR nur jeweils einige Sekunden dauert – weil der Schritt dutzende Male wiederholt wird, dauert das Verfahren insgesamt trotzdem recht lang.

Im Rahmen eines Projekts in der Fördermaßnahme KMU-innovativ hat das Unternehmen in Martinsried nun den PCR-Prozess massiv beschleunigt. Das BMBF hat die Entwicklung mit rund 300.000 Euro gefördert. „Wir halten die gesamte Flüssigkeit auf einer konstanten Temperatur. Mit kurzen Laserpulsen heizen wir Goldnanopartikel auf, an denen die zu vervielfältigenden DNA-Abschnitte hängen", beschreibt Stehr das von ihm mitentwickelte Laser-PCR-Verfahren. Das kurze – nur wenige Mikrosekunden dauernde – Aufheizen der Nanopartikel funktioniert etwa eine Million Mal schneller als das bisherige Heizen der gesamten Flüssigkeit. Binnen 15 Minuten kann so der gesamte Prozess abgeschlossen werden, heißt es von GNA Biosolutions.

Auf den ersten Blick ist die immergrüne Kreuzblättrige Wolfsmilch (Euphorbia lathyris) eher unscheinbar. Tatsächlich hat das Kraut es aber in sich: Die Samen enthalten 40-50 Prozent fettes Öl. Der reichlich fließende Milchsaft enthält zudem 8-12 Prozent Kohlenwasserstoffe als Terpene. Vor allem die darin enthaltenen energiereichen Triterpenoide haben das Interesse der Wissenschaft geweckt. Denn diese könnten Biokraftstoffen beigemengt werden. Weil die Pflanze auch auf trockenen und kargen Böden gedeiht, die sich kaum anderweitig nutzen lassen, würden wertvolle Ackerflächen entlastet. Mit Unterstützung des Bundesforschungsministerium hat ein internationales Wissenschaftlerteam unter Beteiligung deutscher Forscher um Hans-Peter Mock vom Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) die Pflanze nun genau unter die Lupe genommen. Das Ziel: Die Wildpflanzen besser verstehen und Optimierungspotenzial für den Einsatz als Energiepflanze ausloten.

Hierzulande ist Euphorbia bei Hobbygärtnern vor allem wegen ihrer fraktalen Wuchsform und der angeblichen Wirkung gegen Wühlmäuse beliebt. Für Hans-Peter-Mock von der Abteilung Physiologie und Zellbiologie des IPK in Gatersleben sind es hingegen vor allem ihre inneren Werte, die zählen. Das Wolfsmilchgewächs enthält reichlich Milchsaft mit einem hohen Anteil energiereicher Kohlenwasserstoffe, sogenannter Triterpenoide. Als Beimengung könnten sie Biokraftstoff einen zusätzlichen Energieschub verleihen. Bereits vor Jahrzehnten sind die Forscher auf die Pflanze aufmerksam geworden.

Wolfsmilchgewächs als Benzinpflanze

Der US-amerikanische Pflanzenforscher und Nobelpreisträger Melvin Calvin, Namensgeber des von ihm entdeckten Calvin-Stoffwechselzyklus in Pflanzen, schlug bereits Mitte der siebziger Jahre vor, Euphorbia als „Benzinpflanze" zu nutzen. Umgesetzt wurden diese Pläne damals aber nicht. Das könnte sich nun jedoch ändern. „Euophorbia gedeiht auch auf mageren Flächen. Sie findet sich zum Beispiel häufig in den Trockengebieten Spaniens", berichtet Mock, Leiter der Arbeitsgruppe Angewandte Biochemie am IPK. Zusammen mit anderen Forschern in Europa hat sein Team daher nun untersucht, ob sich das Wolfsmilchgewächs als Energiepflanze nutzen lässt. Neben den IPK-Forschern aus Gatersleben waren auch Wissenschaftler aus Spanien und Frankreich an dem Projekt beteiligt. Der Erdölkonzern Repsol und das spanische Unternehmen Synergia unterstützten die Arbeiten von der Industrie-Seite. Im Rahmen des Projekts „Produktion Energiereicher Triterpenoide in Euphorbia lathyris, einer potentiellen Nutzpflanze für Biokraftstoffe der dritten Generation" (Eulafuel) hat das Bundesforschungsministerium die Arbeiten am IPK als Teil der Forschungsinitiative Plant-KBBE II von 2010 bis 2013 mit rund 227.000 Euro gefördert.

At first glance, the evergreen Caper Spurge (Euphorbia lathyris) is a less-than-impressive plant. Nevertheless, this herb does indeed pack some punch: the seeds contain 40-50 percent fatty oil. This abundantly flowing ‘latex’ also contains 8-12 percent volatile unsaturated hydrocarbons known as terpenes. What as really attracting the interest of scientists is the terpenes that take the form of energy-rich ‘triterpenoids’. This is because they represent a possible additive for biofuels. Moreover, because the plant grows on dry and poor, the use of the plant for fuels would represent an opportunity to relieve pressure on valuable arable land. With the support of the German Federal Ministry of Research, an international team of scientists – including participation from German researchers headed by Hans-Peter Mock from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) – is now giving the plant its chance to shine. The objective is an improved understanding of the wild plant and an opportunity to explore its optimisation for use as an energy crop.

Euphorbia is popular in Germany above all because of its pretty fractal-like patterns and, for home gardeners, for its purported protective effect against voles. For Hans-Peter Mock at the Department of Physiology and Cell Biology at IPK Gatersleben, it is another aspect entirely that makes the plant an interesting subject: spurge contains an abundance of milky sap with a high proportion of energy-rich hydrocarbons, otherwise known as triterpenoids. As an admixture, these could well be put to use to give biofuels extra kick. The researcher first developed an interest in the plant some decades ago.

Caper spurge as gasoline plant

As far back as the mid-Seventies, the American plant scientist and Nobel Prize winner Melvin Calvin (discoverer of the Calvin cycle in the plant metabolism), suggested using Euphorbia as ‘gasoline plant’. Although these plans were never implemented, there has been revived interest in the subject. “Euophorbia thrives on lean soils, and can be found, for example, in Spain’s arid regions,” explains Mock, head of the Applied Biochemistry working group at the IPK. Working together with other researchers in Spain and France, his team is now investigating whether the spurge family can be put to use as an energy crop. The oil corporation Repsol and Spanish firm Synergia are providing support on the industrial side. The Federal Ministry of Research is supporting the work at the IPK from 2010 to 2013 with around 227,000 euros as part of the research initiative Plant-KBBE II and within the framework of the project Eulafuel, which stands for ‘Production of energy-rich triterpenoids in Euphorbia lathyris, a potential crop for third-generation biofuels’.

Numerous defence substances in the latex

Using a wide range of molecular, biochemical and histological techniques, the scientists having been zoning in on the plant to gain an understanding of the composition and formation of the so-called latex. There has been a clear division of labour from the outset: the French researchers at the Institute of Plant Molecular Biology of the National Centre for Scientific Research (CNRS) and the University of Strasbourg have been concentrating on the metabolites in the Euphorbia. The scientists in Barcelona and Valencia are focused on the RNA-related aspects. A view into the transcriptome reveals the state of activation of genes in a plant at any one time. The IPK team, on the other hand, is studying the protein composition of the latex. “We have gathered a great deal of information,” says plant researcher Mock. “It has been surprising to see how many different irritant or allergy-causing substances are present in the latex.” Thereby, the scientists have been subjecting the liquid to a barrage of analytical techniques. “Firstly, we had to remove commonplace proteins in order to analyse the rarer molecules,” reports Mock. The latex contains specific substances that can quickly cause proteins to malfunction and thus detract from analyses. Here, the trick of the scientists was to add special enzymes that disassemble the proteins into numerous fragments, the peptides. This stops the malfunctioning and enables deeper analysis.

Commercial implementation feasible in principle

The spurge plants also use the latex as a defence against enemies. Components such as ingenol and ingenol esters can cause irritation of the skin, so much so that, at harvesting time, gloves are used to handle the plant, to avoid allergic reactions. But what could at first seem to preclude commercial use may indeed to be something beneficial. The idea of the researchers is to create plants in which only a comparatively small quantity of defence substances is produced, and to use the surplus energy to form greater quantities of triterpenoids. In view the evidence gathered in the course of the project to date, the participating companies Repsol and Synergia in Spain consider commercial implementation to be possible. Repsol, one of the ten largest private oil companies in the world, has been systematically researching renewable resources since 2010. In that year they founded the ‘New Energy Business Unit’, which is studying the use of Jatropha oil, among other subjects. Much like Euphorbia, Jatropha is another plant that can withstand particularly austere conditions. Nevertheless, even in the best case it will take some years until the Caper Spurge is fit for industrial application on a large scale. The team at the IPK has already profited from the work, says Mock: “Together with a Polish partner, we are studying the tetterwort plant for ingredients that can be put to medical use. Here, the experiences gained with Euphorbia have been extremely useful.”

Autor: Bernd Kaltwasser

Enzyme sind in einigen Industriebranchen die heimlichen Stars: So sind die Biokatalysatoren Schlüsselkomponenten heutiger Waschmittel. Das Potenzial von Enzymen noch weiter erschließen will die von dem Monheimer Biotech-Unternehmen Evocatal koordinierte strategische Allianz „Funktionalisierung von Polymeren (FuPol)". Hier sollen innovative Produkte für die Textilwirtschaft sowie für die Bauchemie entstehen. Neu entdeckte Enzyme sollen dafür eingesetzt werden, Naturstoffe oder synthetische Fasern gezielt zu verändern und mit nützlichen Eigenschaften auszustatten. Die neun Partner aus Industrie und Hochschulforschung bringen bis 2018 insgesamt 8 Millionen Euro auf, die Hälfte davon steuert das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der „Innovationsinitiative industrielle Biotechnologie" bei.

Polymere mithilfe von geeigneten Enzymen veredeln und so die Basis für innovative Produkte schaffen – das ist das Ziel der FuPol-Allianz. Sie ging 2013 an den Start und führt insgesamt neun Partner aus Industrie und Akademie zusammen. Koordinator des Netzwerks ist Christian Leggewie, Forschungschef beim Enzymspezialisten Evocatal. Im Fokus der FuPol-Allianz stehen zwei Module: „Zum einen wollen wir natürliche Polymere wie Lignin oder Cellulose für die Bauchemie nutzbar machen," erläutert Leggewie, „zum anderen synthetische Polymere für die Textilwirtschaft aufwerten." Die Werkzeuge dazu sind in beiden Fällen Enzyme – die Multitalente unter den Eiweißmolekülen. Die Natur hat bereits eine gewaltige Vielfalt an Enzymen hervorgebracht. Die Biotechnologen durchforsten Bioarchive nach Molekülen mit den gewünschten Fähigkeiten. Mithilfe moderner Enzymtechnologien versuchen sie zudem, ganz neuartige Biokatalysatoren zu entwickeln.

This is hoped to assist in the development of innovative products for the textile industry and for construction chemistry. Thereby, newly discovered enzymes will be employed to targetedly modify natural products or synthetic fibres and to equip them with useful properties. To pursue these goals, the nine partners from industry and higher-education research have a total of €8 million up to 2018, half of which is managed by the Federal Ministry of Education and Research (BMBF) in the context of  ‘Innovation Initiative Industrial Biotechnology’.

Refining polymers using specially made enzymes and thereby laying the foundations for innovative products – this is the objective of the alliance FuPol. The initiative began in 2013 and comprises a total of nine partners from industry and academia. The coordinator of the network is Christian Leggewie, head of research at the enzyme specialists Evocatal. Two modules stand at the focus of the FuPol alliance: “Firstly, we want to make natural polymers such as lignin or cellulose usable for the construction chemistry,” says Leggewie, “and secondly we want to enhance synthetic polymers for the textile industry.” In both cases, the tools for these tasks are enzymes – the most multi-talented of all the protein molecules. Nature has already given us a huge variety of enzymes, and today, biotechnologists are scouring the bioarchives for the right molecules with the right skills. Aided by modern enzyme technology, they are also working to develop entirely new biocatalysts.

Enzymes for nibbling on nodules

Enzymes with new capabilities are in great demand in the textile and detergent industries, among other sectors. Washing powders already contain celluloses for cleaning cotton fabrics. “They nibble away at microfibres or the knot-like nodules that protrude from the textile, and in this way prevent the clothes from becoming rough and grey,” says Leggewie. The fast-growing market of synthetic textile fibres, which in 2011 saw production of around 36 million tons of PET fibres worldwide, faces a different challenge. After repeated washing, nodules will form in the synthetic fabrics – a problem for which no remedy has been found to date.“ We want to find new enzymes to tackle this issue,” stresses Leggewie. Together with academic partners from the University of Leipzig and the DWI at RWTH Aachen and RWTH Aachen, the Evocatal biotechnologists are searching through the esterase class of enzymes to find those that may be able to cope with the artificial substrate PET fibres and cleave apart the unwanted nodules. “We have a shortlist of around 30 enzymes, and these are now being put through an extensive testing phase,” says Leggewie. The best of these bio-based detergents are now being lined up for further development – work that is taking place together with the detergent manufacturer Henkel, where the enzymes must pass the ultimate washing machine tests. Other enzymes in the FuPol Alliance are aimed at modifying synthetic fibres in such a way that they become more adherant for dyes and paints.

In a further module, the partners in the strategic alliance are busy working on natural polymers, i.e. complex molecules such as lignin and cellulose that are derived from renewable resources. In the example of lignin, the associated pulp production produces about 50 million tonnes of mechanical pulp every year – waste that is burned. The idea now is for the alliance to use enzymes to convert lignin into a concrete admixture. They are essential for modern civil engineering and help to save water, to increase the quality of the concrete and to ensure that the material dries quicker. However, most additives to concrete are petrochemical-based. “Concrete additives from natural substances can save water, release less CO2 and bring savings in energy,” says Leggewie. Here again, it is enzymes that are set to make the difference in this project: A team of researchers headed by Wolfgang Streit at the University of Hamburg have searched through environmental samples for interesting biocatalysts, with some success. “We’re also going through the test phases to pick out the best candidates,” says Leggewie.

Feasibility studies

Here, practical testing will also demonstrate the real-world actual qualities of the new bio-based concrete additives. The Swiss company SIKA Bauchemi, which has also worked with Evocatal on earlier projects, is responsible for this process. EMPA, which is likewise based in Switzerland, will work in close cooperation with industrial partners to develop a customised process for modifying the lignin. Ideally, the partners in the FuPol alliance will demonstrate the feasibility of all sub-projects by 2016. The following two years will then see the transfer to industrial scale of the production processes for bio-based tools and products.

Author: Philipp Graf

Nachwachsende Rohstoffe sind in der Industrie zunehmend als Alternative zu fossilen Rohstoffen gefragt. Als Bausteine pflanzlicher Biomasse werden bisher vor allem Kohlenhydrate, Fette und Öle genutzt. Doch Pflanzen stecken auch voller Proteine. Deren Potenzial stärker industriell zu erschließen, ist das Ziel der strategischen Allianz „Technofunktionelle Proteine – TeFuProt". 14 Projektpartner aus Wirtschaft und Wissenschaft arbeiten unter Koordination der Berliner ANiMOX GmbH daran, Proteine aus Resten der Rapsölproduktion zu gewinnen. Die Eiweiße sollen so optimiert werden, dass sie als Grund- oder Zusatzstoffe in Farben, Reinigungsmitteln, Bau- oder Schmierstoffen eingesetzt werden können. Für die kommenden sechs Jahre bringen die Akteure insgesamt 9 Millionen Euro auf, die Hälfte steuert das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der „Innovationsinitiative industrielle Biotechnologie" bei.

„Proteine gehören wie Cellulose oder Lignin zu den Bestandteilen nachwachsender Rohstoffe, aber ihr Potenzial für die chemische Industrie wird bisher kaum genutzt", sagt Axel Höhling. Er ist Geschäftsführer der Berliner ANiMOX GmbH und federführender Koordinator der TeFuProt-Allianz. Dabei waren Proteine noch zu Beginn des 20. Jahrhunderts ein Ausgangsgrundstoff der Kunststoffchemie gewesen – das für Knöpfe, Schirmgriffe oder Radiogehäuse genutzte Galalith wurde einst aus dem Milchprotein Casein hergestellt. Mit dem Erdölboom geriet der Stoff jedoch ins Hintertreffen und weitgehend in Vergessenheit. „Wir wollen den vernachlässigten Rohstoff Protein aus nachwachsenden Quellen wieder für technische Anwendungen erschließen", sagt Höhling.

Auch in deutschen Gärten könnten Gartenreste bald zum Grillen verwendet werden. Nach dem erfolgreichen Abschluss einer weiteren Finanzierungsrunde auf der Crowdfunding-Plattform Startnext will das Start-up GloW efficiency off-grid GmbH den ursprünglich für den Einsatz in Entwicklungsländern entwickelten Mikroholzvergaser GloW yaMbao auf dem heimischen Grillmarkt anbieten. Der Freiluftherd kann mit Gartenresten wie  Strauchschnitt angeheizt und somit auch zur Abfallbeseitigung verwendet werden.

Kochen über dem offenen Feuer wird hierzulande als Aberteuer beim Zelten zelebriert. In Ländern wie  Asien, Afrika und Südamerika sind offene Feuerstellen in geschlossenen Räumen vielerorts Alltag. Lange wurden die gesundheitlichen Gefahren durch das Einatmen von verbranntem Holz missachtet. Inzwischen gibt es erste Studien die einen Zusammenhang belegen. Nach Schätzungen der WHO sterben jährlich etwa zwei Millionen Menschen an den Folgen von Holzrauch, die Hälfte davon Kinder unter fünf Jahren.

Biogasherd nutzt Gartenabfälle

Mit GloW yaMbao hat das niedersächsische Start-up GloW efficiency off-grid GmbH vor zwei Jahren einen alternativen Kochherd entwickelt, der grobe, trockene Biomasse wie Holz, Pellets, Strauchschnitt effektiv nutzt, ohne Menschen in der Umgebung der Kochstelle zu schädigen. Über die Crowdfundingplattform Startnext konnte das Start-up 2014 Geld einsammeln und die Entwicklung des alternativen Herds vorantreiben. Bei GloW yaMbao handelt es sich um einen sogenannter Mikroholzvergaser, der grobe, getrocknete Biomasse wie Holz oder Pellets zum Kochen nutzt.

Neuer Grill für heimische Gärten

Der ursprünglich für Entwicklungsländer konstruierte Herd wird inzwischen in 15 Ländern weltweit „getestet, ausprobiert, genutzt und geliebt!“, wie die Entwickler berichten. Das Konzept des sauberen Kochens hat offenbar auch hierzulande Garten- und Grillfreunde überzeugt. Nun soll der Energiesparherd von Glow, der erweitert um eine abnehmbare Grillplatte, auch den heimischen Markt erobern. Dafür hat sich das Jungunternehmen über eine neue Crowdfunding-Runde über die Plattform Startnext Kapital gesichert. Innerhalb von zwei Monaten konnte Glow 82 Klein-Investoren überzeugen und so rund 8.200 Euro einsammeln. Mit dem Geld soll vor allem der Vertrieb in Deutschland vorangebracht werden.

Holzgas erzeugt Holzkohle zum Düngen

Mit dem neuen Biogasofen haben die Jungunternehmen nicht nur einen neuen Grill entwickelt. Das Gerät besteht neben einem Herd aus einem speziellen Aufsatz, in dem Biomasse wie Astholz bei hoher Temperatur vergast wird. Dabei treten Wasserdampf und Sauerstoff aus und teile der Biomasse werden zu Gas verwandelt. So entsteht im oberen Teil eine konstant brennende Gasflamme, die wenig Energie verbraucht und innerhalb von fünf Minuten die erforderliche Koch- oder Grilltemperatur erreicht. Daneben erzeugt das brennbare Holzgas Holzkohle, die im unteren Teil erhalten bleibt, wiederverwendet oder später als Dünger für Gartenböden genutzt werden kann. Fazit:  Glow-Herd ist mehr als nur ein neuer Gartengrill. Er kann auch zur Abfallbeseitigung von Strauch- oder Baumschnitt im Garten genutzt und so eine saubere, gesunde und effektive Alternative zu umstrittenen Holzkohlsorten wie aus Tropenholz.

bb

Experts from industry expect the global bioplastics production capacity to increase from around 4.2 million tonnes in 2016 to 6.1 million tonnes in 2021, mainly in consumer goods and applications in the transport sector. “The market is predicted to grow by 50% over the coming years despite the low oil price,” says François de Bie, Chairman of European Bioplastics at the 11th European Bioplastics Conference in Berlin.

Lack of public awareness and acceptance, however, could hamper uptake of bioplastics at the consumer level. According to a survey of more than 1.700 consumers, most of them have incomplete knowledge of what bioplastics are as well as what they can do. “Most consumers have unrealistically high expectations in the sustainability of bioplastics,” study author Julia Marie Blesen said to the approximately 350 visitors.

According to the survey, only 36.3% had ever heard of bioplastics while 56.7% of consumers said they have never heard of bioplastics before. However, the 7.1% of pollees, who claimed to have detailed knowledge of bioplastics 66.9% characterised them as biodegradable (about 25% of current bioplastics or 964,000 tonnes, are biodegradable), and 39% said they were bio-based (about 75% are bio-based and non-biodegradable). On the other hand, they expected bioplastics to be non-toxic and environmentally-friendly. At the same time, there seems to be deep mistrust as consumers claimed the industry to use the terminus bio-based for green-washing. The study author recommended to create more awareness and transparency about the existing advantages of bioplastics to prevent dissatisfaction of consumers whose expectations wouldn’t be met.

“Industry is in a difficult situation as bioplastics are complex and it’s hard to communicate all pro and cons of the very different bioplastics in an appropriate way”, European Bioplastics’ head Hasso von Pogrell told European Biotechnology. In fact, bioplastics are an emergent sector. Bio-based (that is plastics made from biomass which have an improved CO2 footprint over conventional plastics), non-biodegradable plastics, such as polyurethanes (PUR) and drop-in solutions, such as bio-based PE and bio-based PET, are the main drivers of this growth, with PUR making up around 40% and PET over 20% of the global bioplastics production capacities. More than 75% of the bioplastics production capacity worldwide in 2016 was bio-based, durable plastics. This share will increase to almost 80%in 2021. Production capacities of biodegradable plastics, such as PLA, PHA, and starch blends (which could contribute to improved recycling), are also growing but with a slower dynamics from around 0.9 million tonnes in 2016 to almost 1.3 million tonnes in 2021. Increased awareness of the pro and cons of bioplastics can support novel approaches for plastics recycling and production to reach the market.

Sodium is found naturally and in abundance in nature as table salt. In the search for improved materials for this new generation of batteries, researchers from Ulm Helmholtz Institute of the Karlsruhe Institute of Technology have struck lucky – on the compost heap. They have developed carbon-based active material for the negative electrodes from apple bio waste. For the positive electrodes, a material made out of layered oxides is used to create the positive cathodes. Both materials were convincing in the test showing “excellent electrochemical properties”, as reported by the team in the industry journal “ChemElectroChem” (2015, Online publication) and “Advanced Energy Materials” (2015, online publication).

Whether for mobile phones, laptops or tables, lithium-ion batteries are energy sources for many electronic devices. But the extraction of lithium is laborious and expensive. For a long time there was no alternative to the powerful mini motors. But now the alkaline material has competition. Sodium-ion batteries are not clearly more powerful than sodium-ion batteries will soon be able to outrun the popular storage giants. The reason: sodium-ion batteries are not only considerably more powerful than systems such as nickel metal hydride, lead acid batteries or lithium-ion technology, in comparison to lithium, there is a unlimited supply of sodium in nature. Because it is also more biodegradable it’s therefore cheaper. .

Carbon from apple biowaste

A group of scientists headed by Stefano Passerini and Daniel Buchholz from the Helmholtz-Institute Ulm of the Karlsruhe Institute for Technology (KIT) have now developed two new active materials for this promising generation of batteries. For the negative electrode, they created a carbon-based material, which is obtained from apple residues, for example, that are produced during the pressing of juice. Under exclusion of air, the carbon develops a consistency that is especially suitable for the battery electrodes. According to the study, the new material was convincing in over 1,000 charge and discharge cycles both with a high cycle stability and high capacity.

Cobalt replaced by sodium oxide

For the positive electrode, the team developed a material, which is comprised of different layers of sodium oxide. The advantage here: the active material does not require the expensive and environmentally unfriendly element cobalt, which is an important component of the commercial lithium-ion batteries. This new active material in which the actual electrochemical energy storage takes place, was also convincing in laboratory tests and could achieve the same performance in over a hundred cycles in terms of efficiency, cycle stability, capacity and voltage, such as the cobalt-loaded lithium-ion batteries. With the development of these two sustainable materials, the scientists hope it will be a crucial step on the way to the development of cheaper and more environmentally friendly sodium-ion batteries.

© bioökonomie.de/bb

The subscription period for the bioeconomy specialists’ shares ended on 3 February. It is expected that the shares will be admitted to trading on the Frankfurt Stock Exchange on 5 February, with the first listing scheduled for 9 February. Based on the final offer price of 9 euros per share, the company has announced that from the 32.5 million euros raised, it will receive gross proceeds of 31.5 million euros. Now with Brain AG’s IPO, the number of German listed biotech companies in Frankfurt will increase to 16.

Despite recent unrest on the stock market, the Zwingenberg company has accomplished its IPO as planned. Overall, 3,608,054 new shares were issued to new investors at a price of 9 euros each, of which 3,500,000 new shares were placed from a capital increase. In addition a further 108,054 existing shares were placed to cover over-allotments. While the issue price was at the lower end of the originally envisaged price range of 9 – 12 euros, the order book was full, says the company.

From the total proceeds of 32,5 million euros, 31,5 million will go directly to Brain AG. The rest is likely to go the current major shareholders, the family Putsch. The transaction was performed in cooperation with the bank Oddo Seydler who acted as lead manager of the IPO.

Family Office Putsch remains largest single shareholder

The percentage of the new shareholders in the company’s share capital will at least be 21.3%. Approximately 19% of the placement volume was allocated to private investors, who among others include staff from the Brain AG group as well as the investment community at MIG-Fonds, who are former shareholder of Brain AG through various funds. The remaining shares were placed with institutional investors from various European countries. The largest single shareholder of Brain AG is the Family Office coup (MP Beteiliungs GmbH, which recently held a little over 50% of the shares. This threshold now appears to have been reached through the IPO.

© bioökonomie.de/sw

The sky farm, or vertical farming, will not only provide the town’s residents with fresh vegetables, the scientists are also developing greenhouses for astronauts in space. As part of their research to build the greenhouses, engineers from DLR have already grown dozens of lettuces under a pink light in a sterilized laboratory. The greenhouses contain combined life-support systems and do not require soil, but hang in the air whilst their roots are constantly sprayed with a solution containing nutrients. The DLR engineers from the research group Eden (more ...) are currently working on developing special greenhouse modules to supply fresh food to astronauts during future long-term missions.

Skyfarming for the masses

These modules are not just restricted to farming in space; they will also be useful on earth. Together with international partners, the DLR has developed computer simulations with 30m high buildings for inner cities, which will be used for growing vegetables. Each building has five floors, with a floor space of 35 x 74m and each floor is 6m high. Out of the five storeys, four are intended for cultivation, with the ground floor used for offices, cold stores and logistics. The engineers have estimated that annually, 630,000 kg of lettuces and 95,000 kg of tomatoes could be grown per floor. “The plants will be bred under well controlled and optimal conditions in our production factory,” says Conrad Zeidler from the DLR Institute of space systems. “Our lettuces and tomatoes taste no different to those you buy in the supermarkets today.”

Cultivation without pests and pesticides

The vegetables are grown in a mixture of water and nutrients and do not require soil. The whole system is hermetically sealed so that weeds and pests cannot penetrate the modules. As a result, pesticides and herbicides are not neccessary. The plants grow in several tiers one above the other. Light-emitting diodes provide them with exactly the amount of light they need. The water, in which they grow, is administered through a circuit and is recycled over and over.

Life on Mars

The scientists are concentrating on highly perishable vegetables or fruit with a high water content such as lettuce, cucumbers and tomatoes – food that cannot be stored easily. Thus it makes more sense to grow these vegetables in space. The greenhouses in space will contain combined life-support systems, which use recycled urine to manufacture fertilizer, helping to grow the food in an environment conducive to Mars and the Moon. Aside from providing the astronauts with nutritional benefits, the plants produce oxygen and give off a lot of water, which can be used for drinking. The DHL engineers hope that vertical farming can also be implemented in dry zones. Because little water is lost, just the amount that the plants store, water is easily replenished than with irrigation, a method that uses large amounts of water. And the researchers have set themselves a goal: once all stages have been completed the first greenhouse will be tested for nine months in 2017 in an inhospitable environment in the Antarctic.

The hidden part of the plant – the tuberous root – that makes up 30% of the plant, however, is discarded. In Europe alone, 800,000 tonnes of chicory roots are generated during the production of chicory salad each year. Currently, after harvesting the chicory leaves, the roots are disposed of as compost or in biogas plants. Wanting to make use of the waste, researchers at the University of Hohenheim have now succeeded in generating hydroxymethylfurfural (HMF) from the chicory plant’s discarded roots. Bio-based HMF is a basic material used in the production of plastic bottles, nylon or polyester. In addition, HMF based on chicory is of higher quality than when its made from crude oil and it is also not a competitor in the food industry. These modules are not just restricted to farming in space; they will also be useful on earth.

The consumer knows chicory as a lettuce and until now outside of a culinary context, chicory has received little attention. However, it's the roots of the white-yellowy buds that are now being looked at as a valuable resource for the bioeconomy. Until now, this part of the plant ends up at composting plants, and only a fraction is used to produce biogas, because the yield of biogas is too low in order to generate electricity efficiently. In contrast to the food industry, scientists at the University of Hohenheim in German are focusing on the non-edible part of the chicory plant. “The root makes up approximately 30% of the plant. The stored carbohydrates are not fully used for the formation of the buds and valuable reserve substances remain. However, the roots can only be used once of chicory growing and have to be thrown away after the buds are harvested,” explains agricultural biologist Dr Judit Pfenning.

In a windowless room in the experimental station of the Hohenheim campus, the walls are covered with three-story shelves holding numerous tubs lined with pond foil. The tubs contain plastic baskets in which the 15-20 cm long roots are placed upright. Over a period of three weeks, these roots grow into chicory buds ready to sell.

An aquarium pump waters the plants with a nutrient solution. The room is kept dark so the salad leaves do not lose their yellow pastel shade or develop any of the bitter substances typical for chicory.The commercial production of chicory salad on the basis of water does not look much different – but a lot bigger: the biennial chicory plant only spends the first five months in the fields. In mid-October, the leaves are mulched and the roots are harvested, stored in a cool place, and then brought to the growing rooms.

Bio-HMF more valuable than crude oil-based chemicals

In a laboratory, Prof. Dr Andrea Kruse demonstrates just how valuable the root really is. In the background you can see pencil-high stainless steel tube reactors filled with chopped chicory roots and water. After adding diluted acid into the ultra-stable pressure container, it is heated up to a temperature of 200 degrees. Afterwards, the watery product is processed in further steps, which are kept confidential. At the end of this process their research associate Dominik Wüst looks at the result: unpurified hydroxymethylfurfural in the form of yellow-brown crystalline powder. This is one of the 12 basic chemicals, which will be used in the future in the plastic industry. It serves as a raw material for nylon, perlon, polyester, or plastic bottles – so-called PEF-bottles, not the PET-bottles. On the wholesale market, it is currently worth 2000 euros per kilo.

Chicory-based HMF in the bioeconomy

Until now, chicory HMF has been obtained by crude oil. As part of a previous research project, Prof. Dr Kruse found a way to extract the basic chemical HMF from fructose. But she believes that HMF made from chicory roots is a more sophisticated source because it does not compete with food resources. “Fructose is edible. There are better uses for it than extracting HMF.” This is not the case with chicory roots, which are inedible. “Until now, they were waste,” she says. There is another aspect that makes the project even more likely to be successful: “The chicory root is not only perfectly suited for the production of HMF because it is waste,” says Dr Kruse, “it also produces a chemical of higher value than the crude oil-equivalent.” This means that PEF-bottles made out of chicory-HMF could be thinner than bottles made of crude oil-PET, resulting in less transportation costs and is better for the environment.

Quality guarantee

As promising as the results are, the researchers still have to overcome another challenge in order for the bio-based plastic chemical to actually penetrate its fossil fuel competitors. “The root is only of interest for the industry if we can guarantee permanent quality,” explains Dr Kruse.

Currently, genome editing has mostly been earmarked for medical applications, but its use in plant breeding could potentially be very promising. However, there is the controversial question of whether plants that have been subject to genome editing will fall under the GMO bracket. According to international scientists, among them Detlef Weigel of the German Max Planck Institute for Developmental Biology in Tübingen, this won’t be the case. They have proposed a regulatory framework for genome editing in plants that was published in the journal Nature Genetics (2016 online publication).

Floods, heat and fungal infestations are stress factors that affect the growth of plants and reduce the yield. Plant researchers aim to develop plants that are resistant to these damaging factors. Now, using the latest gene editing technology CRISPR/Cas9, plant scientists are euphoric that they can use the genetic “scissors” to simply target and change specific genes. But isn’t fiddling with plants using genome editing tools genetic engineering? The researchers, including Detlef Weigel, director at the German Max Planck Institute for Developmental Biology in Tübingen are convinced that these technologies will be put to good use and have great potential for plant research. In reports of genome editing, metaphors such as genome surgery or genetic scalpel are often used. “The conventional genetic engineering of plants can be compared to open-heart surgery when opening up the entire chest,” explains Weigel. Genome editing on the other hand is a more minimally invasive procedure, argues Weigel, because one can precisely determine where in the genome a change is meant to happen.

Changing genes quickly and precisely

The advantage of genome editing: this technology can determine precisely determine at what point the genetic changes are to be carried out. Usually, it is sufficient to replace or remove just a single letter in the DNA. Using this minimal genetic intervention, crops may be altered such as wheat, rice or corn so that they are more resistant to fungal attack or suffer less from the heat. As part of a study published in the journal Nature Genetics, the researchers also addressed the disadvantages of conventional genetic engineering techniques. Planting genes from other plant species or organisms, has been possible for a long time. But which genes ultimately end up in the genome cannot be controlled. Therefore, according to Weigel, many candidates would have to be screened until you have a plant with the desired properties.

At the same time, the researchers reference the standard tools of plant cultivation – such as the crossing of plants or the use of chemicals or radiation – where mutations are also triggered in the genome. According to the study, the achievements of plant breeding are not always better and “finding promising specimens” is also a very lengthy and costly process. Compared to plants that are cultivated with genome editing, these products may be marketed without market authorisation.

No special regulations for approval

In their appeal, Weigel and his research colleagues speak out for a change in thinking in the approval of genome-edited plants. After which, these plants should, in principle, not be treated differently from products of conventional breeding. Weigel makes reference to the German genetic engineering law that classifies only organisms that have been genetically engineered, whose “genetic material has been altered in a way that does not occur naturally by crossing and or natural recombination.” The legislation then has no reason to assess the plants produced by genome editing unlike conventional breeding products.

Documenting the development process

In view of the above, Weigel and his colleagues from China and the US are submitting proposals on what should be taken into account during the development of gene-edited plants. During the development phase, they advise on minimising the risk of propagation in open land. Secondly, the resulting DNA changes should be accurately documented and thirdly, it has to be taken into account that CRISPR/Cas9 techniques may in the beginning require insertion of foreign DNA, if this is the case, it has to be documented that the foreign DNA has been completely removed without a trace. Finally, if a gene has been replaced by a gene from a different species, it should be stated how close the two species are related to each other.

According to the study, all these points should be strictly adhered to upon approval of new plant species. The European Union has not finalised their assessment, but in both Germany and Sweden, the responsible authorities have already declared that certain genome-edited varieties in principle are the same as plant varieties of conventional breeding. "An important aim of breeding is to make the supply of agricultural products more sustainable. Genome editing can, for example, help when breeding for resitance to fungal infection without the use of chemical pesticides. We cannot miss out on such opportunities,” explains Weigel.