Biotechnologie/Systembiologie

Mehr Präzision für die Genschere

CRISPR-Cas9 hat die Molekularbiologie revolutioniert. Das enzymatische System funktioniert wie eine Schere, die DNA an einer definierten Stelle schneiden kann, um Gene zu deaktivieren oder neue Gensequenzen einzufügen. Damit CRISPR-Cas9 die richtige Stelle zum Schneiden findet, wird es mit einer zielabhängigen sogenannten guide-RNA kombiniert. Doch selbst die irrt zu einem gewissen Prozentsatz bei der Zielfindung.

So funktioniert der Corona-Turbo-PCR-Test

Um eine akute Infektion mit dem Corona-Virus nachzuweisen, werden täglich Tausende Tests auf Basis der Polymerasekettenreaktion (PCR) durchgeführt. Mithilfe dieses molekularen Kopierverfahrens wird in den Abstrichen das Erbgut des Virus nachgewiesen, das aus dem Biomolekül Ribonukleinsäure (RNA) besteht. Die wenigen Virus-RNA-Moleküle werden zunächst in DNA umgeschrieben und dann durch die PCR in zahlreichen Kopierzyklen vervielfältigt. Erst auf diese Weise kann die Existenz des Viren-Erbguts in den Proben ermittelt werden.

Algenblüten per Satellit aufspüren

Satellitendaten dienen längst nicht mehr nur zur Wettervorhersage. Sie liefern Agrarforschern wichtige Informationen zu Bodenbeschaffenheit oder Pflanzenwachstum und sind die Grundlage für Ernteprognosen. Auch für Meeresforscher sind die Daten aus dem Orbit ein wichtiges Werkzeug, um aus der Ferne das Algenwachstum beobachten zu können. Bisher konnte man mithilfe der Satelliten die Menge des Pflanzenfarbstoffs Chlorophyll im Wasser und damit die Algenkonzentration messen.

Aminosäure biotechnisch erzeugt

So manche Feinchemikalie haben Wissenschaftler sich in der Natur abgeschaut. Auch Phenylglycin ist eine Substanz, die von Bakterien hergestellt wird. Allerdings gibt es von ihr zwei spiegelbildliche Formen – L-Phenylglycin und D-Phenylglycin. Ersteres ist das Produkt der Mikroorganismen, letzteres eine medizinisch hoch interessante Verbindung, die jedoch nur auf konventionelle Weise in einem petrochemischen Prozess hergestellt werden kann – bis jetzt.

Epigenetische Spuren des Klimawandels

Pflanzen und Tiere haben sich im Laufe der Evolution an ihre Umwelt angepasst. Die schrittweise Veränderung des Erbguts vollzog sich über unzählige Generationen. Doch der Klimawandel wird für viele Organismen zum Problem, weil er zu rasant voranschreitet. Forscher am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel haben im Rahmen einer internationalen Studie nun untersucht, wie stark epigenetische Mechanismen die Anpassungsfähigkeit von Organismen an die Umwelt beeinflussen.

Neues Stoffwechsel-Design erprobt

Pflanzliche Reststoffe sind ideale Rohstoffe für biobasierte Alternativen zu Produkten der Petroindustrie: Sie stehen nicht in Konkurrenz zum Anbau von Nahrungs- und Futtermitteln und versprechen zusätzlich generierten Mehrwert zu den ohnehin produzierten pflanzlichen Produkten. In der Praxis gibt es jedoch häufig eine Schwierigkeit: Die biotechnologisch genutzten Mikroorganismen kommen meist mit nur einer der beiden Sorten von Zuckern zurecht, die sich in pflanzlichen Reststoffen befinden.

Lipide begrenzen Saugkraft der Pflanzen

Pflanzen brauchen Wasser zum Wachsen. Der Nachschub an Flüssigkeit erfolgt dabei über die Wurzeln. Wie stark die Wasseraufnahme ist, bestimmt ein Hydrauliksystem, das ähnlich wie bei Maschinen funktioniert. Ein Unterdruck sorgt dafür, dass Pflanzen das Wasser aus der Erde saugen. Die Saugkraft beruht dabei auf dem Unterdruck in den pflanzlichen Versorgungskanälen, der durch die Wasserverdunstung an den Zellwänden der Blätter entsteht. Doch der Druck in diesem Netzwerk ist mit minus 100 bar bei Pflanzen in der Regel limitiert. Warum das so ist, war bisher unklar.

Pflanzlicher Naturstoff aus Mikroben

Die Natur bietet eine große Palette an Wirkstoffen, die für Medizin, Pharma- und Lebensmittelindustrie eine immer wichtigere Rolle spielen. So rücken nach und nach auch Naturstoffe ins Rampenlicht, die wenig populär sind. Die Ferulasäure ist solch ein Kandidat. Sie ist in vielen Pflanzen wie Reis, Dill oder Rosenwurz enthalten und besitzt gesundheitsfördernde Inhaltsstoffe ebenso wie Geschmacksstoffe, die für die Herstellung von Aromen wie Vanillin und den typischen Weizenbiergeschmack relevant sind.

Schutzmaske aus bakterieller Cellulose

In der Corona-Pandemie sind Schutzmasken zum Alltagsgegenstand geworden. Mittlerweile ist der anfängliche Engpass behoben, Mundschutze sind fast überall erhältlich – denn fest steht: Schutzmasken werden das Bild in der Öffentlichkeit noch lange prägen. Doch die Maskenpflicht sorgt für neue Probleme: Achtlos entsorgte Einwegmasken sorgen für mehr Müll und gefährden die Umwelt, weil sich das Material nicht ohne weiteres zersetzt. Eine nachhaltige Alternative könnten Einmalmasken aus bakterieller Produktion sein.

Biokatalysator für neue Arzneien

Seit vielen Jahren schaut sich die Medizin so manches Molekül aus der Natur ab, doch meist sind diese Verbindungen so komplex, dass es schwierig ist, sie chemisch nachzubauen. Wenn es doch gelingt, ist die Basis dafür letztlich erdölbasierte Chemie. In der Natur hingegen erzeugen Enzyme diese komplexen Moleküle. Eines davon ist das Enzym AmbDH3, welches ein Team um Frank Hahn nun näher untersucht hat und das in Bakterien daran beteiligt ist, Ambruticin zu bilden, ein mutmaßliches Fungizid.