Aktuelle Veranstaltungen

An oil slick measuring 10,000 square metres endangered marine animals, sea birds and costal inhabitants. Until now, oil spills have been cleaned up by burning the oil, or using dispersion materials, which decompose the oil with the use of chemicals. These methods have been controversial for a long time because they equally pollute the environment. According to environmental scientists, the dispersant chemicals used can cause genetic mutation and cancer, adding to the toxicity of the spill. 

Water ferns' oil absorbing abilities

Scientists based at Karlsruhe Institute of Technology's Institute of Microstructure Technology (KIT) have now found an environmentally friendly solution to clean up oil-contaminated waters. Reporting their latest results in the journal Bioinspiration & Biomimetics, the team of scientists, led by material researcher Claudia Zeiger, said they were inspired by nature. In their study, the researchers focused on several water plants including four species of aquatic ferns – Salvinia – which are well known for their oil-absorbing abilities, making the leaves water repellent. “We already knew that the leaves of these plants repel water, but for the first time now, we have studied their capacity to absorb oil,” explains Zeiger. Together with colleagues from the University of Bonn, the team discovered the secret behind the oil absorption. The answer lies in the oil-binding properties of the hair-like microstructures called trichomes on the leaf surface.

Microhairs shaped like eggbeaters

Tiny little outgrowths called trichomes, which are similar to hairs and between 0,3 and 2,5 millimetres long, cover the surface of the Salvinia. When compared to different varieties of Salvinia, the scientists established that it was not the leaves with the longest hairs that absorbed the most oil, but the oil-binding ability is determined by the shape of the microhairs' ends. “From our results we now know that the shape of the hair ends is important in supporting the oil/air interface to ensure maximum oil absorption and retention capabilities," Zeiger stresses. The type of water fern that absorbed most of the oil is called Salvinia molesta. It is native to Brazil and its microhairs look like miniature eggbeaters and are joined together at the ends. Salvinia was able to absorb most of the oil. Furthermore, tests have shown that the water ferns are able to absorb oil in a matter of seconds.

The aquatic plants, which are native to the tropics and subtropics is now also increasingly found in European waters. For some, the plants have become a plague because they spread rapidly. This is another point why the Karlsruhe researchers are in favour of using the water plants as oil absorbers. They are not only fast and environmentally friendly, but also a cost-effective alternative to chemical cleaning of oil-contaminated waters. “The plants could be used for example in lakes where oil has accidentally entered the lake,” explains Zeiger.

Natural model for plastic films

In order to clean up oil spills, the Karlsruhe researchers now want to transfer their newly acquired knowledge on the Salvinia aquatic plants to a bio-inspired plastic film technology developed by them. The scientists have developed a synthetic version of these hairy surfaces and called it nanofur. The plastic nanofur is made up of microhairs on the film’s surface. It mimics the water-repellent and oil-absorbing effect of Salvinia to separate the oil and water.

Researchers at the Max-Plank Institute of Molecular Plant Physiology (MPI-MP) have now found a way to produce the natural compounds found in soya beans and grapes en mass to be used in medicine. The scientists used the tomato as a natural medicine factory. As the team reported in the journal Nature (2015, online publication), with the help of a genetic trick, the scientists succeeded in taking the gene from the other plants and inserting it into the tomatoes, which increased the gene hundredfold.

Many fruits and vegetables such as oranges, grapes, tomatoes and spinach contain natural compounds that protect against diseases or can even heal. Tomatoes can reduce the risk of a stroke and when cooked can protect against sunburn and strengthen the structure of the skin. The substance responsible for this is lycopene. However, the fruit only contains a small amount of lycopene, so that huge amounts of tomatoes need to be eaten to meet the daily requirements and achieve the beneficial effect.

Natural substances used as medicine

These relevant substances in plants are called secondary metabolites and it's the scientists’ goal at the Max-Plank Institute of Molecular Plant Physiology (MPI-MP) to apply them in medicines. The team around Alisdair Fernie from MPI-MP and Cathie Martins from the John Innes Centre in England have found a way to produce these natural substances in large quantities. And to do this they used the tomato plant. The plant can produce 500 tonnes of fruit per hectare making it one of the most productive crops, making it particularly suitable as a bio-factory for plant substances. 

But the researchers didn’t go for lycopene from the tomato plant. Instead, they chose the equally medically relevant substances resveratrol and genistein for their experiments. Genistein is a secondary metabolite found in soya beans that can prevent various types of cancers, such as breast cancer.

Integrated genetic switches

To stimulate the production of both substances in the tomatoes, the researchers have used a genetic trick: they planted the gene AtMYB12 from the model plant Arabidopsis thaliana in the tomatoes. AtMYB12 is responsible for the production of the AtMYB12 protein. The AtMYB12 encodes a protein that binds to essential genes of phytochemicals and boosts their production. “This protein works like a switch, which can turn the production of secondary plant substances on or off,” describes Alisdair Fernie, research group leader at the MPI MP in Potsdam.

Tomatoes as bio-factories

Afterwards, the selected nutrients were introduced together with other genes for the production of enzymes from soya beans and grapes in the tomatoes, which allow the production of the compounds resveratrol and genistein. The result: once equipped with the compounds (Phenylpropanoids), tomato plants are enriched with more than a hundred times the amount of resveratrol than grapes. This is also the case with genistein. The content of genistein in the tomatoes also exceeds that of soya products. The reason for the increase in the production of these substances is the introduction of a completely new metabolic pathway that has established itself in the tomato plants and kicks off the production of the natural substances. Using tomato plants as bio-factories has an economical advantage too. Instead of a laborious synthetic process in the laboratory, the natural substances can simply be extracted from the pressed juice of the tomato and the substrate used for the production of pharmaceuticals in medicine. The Max-Planck researchers are convinced that this technique could also be applied to other compounds to be used in medicine.

© biooekonomie.de/bb

Researchers from the Fraunhofer Institute for Biomedical Engineering IBMT Biomedical from the town of Sulzbach have discovered that alginate appears to be the ideal breeding ground for the propagation of pluripotent stem cells. The two types of algae are known as Lessonia trabeculata and Lessonia nigrescens and grow on Chile’s coasts. For the drug tests of the future, the pharma industry and medical research needs large quantities of pluripotent stem cells.

These stem cells have the potential to transform themselves into any kind of somatic cell, such as the cells of inner organs. After tests, the scientists at the Fraunhofer IBMT are convinced that the microorganisms supporting skeleton – the alginate – is the perfect breeding ground to cultivate stem cells in the laboratory. The IBMT scientists from Sulzbach developed the production process as well as the technology platform together with colleagues in Chile and the Great Britain.

In a laboratory operated by IBMT and Fraunhofer Chile at UCN University in Coquimbo, the seaweed is individually peeled, shredded, and completely dried. This is all done within 24 hours to prevent the material from becoming contaminated. The seaweed granulate is then exported to Germany, where IBMT scientists separate out the alginate in the institute’s cleanroom. After this process, it is available in liquid form and can be shaped into beads using a strong jet of air. The beads are now more stable in a barium bath, as barium tends to remain in the seaweed mass. “The trick is to make the material stable, but not too hard,” says Prof. Zimmermann, Managing Head of Fraunhofer IBMT. “Cells feel especially at home in elastic 3D environments such as are found inside the body. It’s precisely this environment that can be simulated perfectly using alginate,” he explains further.At the same time, the researchers introduce active ingredients into the alginate and release them in a controlled manner – monitoring them constantly. Examples of such active ingredients are substances that transform pluripotent stem cells into certain somatic cells. By mixing the two types of algae they could also determine the elasticity and size of the alginate.

Algae skeletons are the petri dish for stem cell cultivation

The alginate is coated with proteins and placed in a bioreactor in an environment of optimum temperature and CO2 and continuously stirred. The researchers concluded: each of the 200 micrometre beads performs the role of a Petri dish. The stem cells grow over the alginate in the containers in three to seven days, propagating as they do so. Because the alginate volumes could be increased without problems in the bioreactors, pluripotent stem cells can be grown in greater quantities and in smaller spaces.

Alginate can influence cell growth

“The stem cells grow better on our alginate – and particularly well in automated bioreactors. They differentiate better into the desired somatic cells than on the plastic substrates generally used today,” explains Prof. Zimmermann. Therefore, he is convinced that in the future the algae skeleton will not only function as a passive breeding ground but also will actively influence the growth of the stem cells. Currently, the cell propagation is validated in the laboratories of British pharmaceutical companies. British pharma companies are currently validating the process in their laboratories. The aim is to show that with the process stable pluripotent stem cells can be produced. “We have already been able to prove this for many individual stem cells at the institute,” says Zimmermann.

Experts from industry expect the global bioplastics production capacity to increase from around 4.2 million tonnes in 2016 to 6.1 million tonnes in 2021, mainly in consumer goods and applications in the transport sector. “The market is predicted to grow by 50% over the coming years despite the low oil price,” says François de Bie, Chairman of European Bioplastics at the 11th European Bioplastics Conference in Berlin.

Lack of public awareness and acceptance, however, could hamper uptake of bioplastics at the consumer level. According to a survey of more than 1.700 consumers, most of them have incomplete knowledge of what bioplastics are as well as what they can do. “Most consumers have unrealistically high expectations in the sustainability of bioplastics,” study author Julia Marie Blesen said to the approximately 350 visitors.

According to the survey, only 36.3% had ever heard of bioplastics while 56.7% of consumers said they have never heard of bioplastics before. However, the 7.1% of pollees, who claimed to have detailed knowledge of bioplastics 66.9% characterised them as biodegradable (about 25% of current bioplastics or 964,000 tonnes, are biodegradable), and 39% said they were bio-based (about 75% are bio-based and non-biodegradable). On the other hand, they expected bioplastics to be non-toxic and environmentally-friendly. At the same time, there seems to be deep mistrust as consumers claimed the industry to use the terminus bio-based for green-washing. The study author recommended to create more awareness and transparency about the existing advantages of bioplastics to prevent dissatisfaction of consumers whose expectations wouldn’t be met.

“Industry is in a difficult situation as bioplastics are complex and it’s hard to communicate all pro and cons of the very different bioplastics in an appropriate way”, European Bioplastics’ head Hasso von Pogrell told European Biotechnology. In fact, bioplastics are an emergent sector. Bio-based (that is plastics made from biomass which have an improved CO2 footprint over conventional plastics), non-biodegradable plastics, such as polyurethanes (PUR) and drop-in solutions, such as bio-based PE and bio-based PET, are the main drivers of this growth, with PUR making up around 40% and PET over 20% of the global bioplastics production capacities. More than 75% of the bioplastics production capacity worldwide in 2016 was bio-based, durable plastics. This share will increase to almost 80%in 2021. Production capacities of biodegradable plastics, such as PLA, PHA, and starch blends (which could contribute to improved recycling), are also growing but with a slower dynamics from around 0.9 million tonnes in 2016 to almost 1.3 million tonnes in 2021. Increased awareness of the pro and cons of bioplastics can support novel approaches for plastics recycling and production to reach the market.

Sodium is found naturally and in abundance in nature as table salt. In the search for improved materials for this new generation of batteries, researchers from Ulm Helmholtz Institute of the Karlsruhe Institute of Technology have struck lucky – on the compost heap. They have developed carbon-based active material for the negative electrodes from apple bio waste. For the positive electrodes, a material made out of layered oxides is used to create the positive cathodes. Both materials were convincing in the test showing “excellent electrochemical properties”, as reported by the team in the industry journal “ChemElectroChem” (2015, Online publication) and “Advanced Energy Materials” (2015, online publication).

Whether for mobile phones, laptops or tables, lithium-ion batteries are energy sources for many electronic devices. But the extraction of lithium is laborious and expensive. For a long time there was no alternative to the powerful mini motors. But now the alkaline material has competition. Sodium-ion batteries are not clearly more powerful than sodium-ion batteries will soon be able to outrun the popular storage giants. The reason: sodium-ion batteries are not only considerably more powerful than systems such as nickel metal hydride, lead acid batteries or lithium-ion technology, in comparison to lithium, there is a unlimited supply of sodium in nature. Because it is also more biodegradable it’s therefore cheaper. .

Carbon from apple biowaste

A group of scientists headed by Stefano Passerini and Daniel Buchholz from the Helmholtz-Institute Ulm of the Karlsruhe Institute for Technology (KIT) have now developed two new active materials for this promising generation of batteries. For the negative electrode, they created a carbon-based material, which is obtained from apple residues, for example, that are produced during the pressing of juice. Under exclusion of air, the carbon develops a consistency that is especially suitable for the battery electrodes. According to the study, the new material was convincing in over 1,000 charge and discharge cycles both with a high cycle stability and high capacity.

Cobalt replaced by sodium oxide

For the positive electrode, the team developed a material, which is comprised of different layers of sodium oxide. The advantage here: the active material does not require the expensive and environmentally unfriendly element cobalt, which is an important component of the commercial lithium-ion batteries. This new active material in which the actual electrochemical energy storage takes place, was also convincing in laboratory tests and could achieve the same performance in over a hundred cycles in terms of efficiency, cycle stability, capacity and voltage, such as the cobalt-loaded lithium-ion batteries. With the development of these two sustainable materials, the scientists hope it will be a crucial step on the way to the development of cheaper and more environmentally friendly sodium-ion batteries.

© bioökonomie.de/bb

The subscription period for the bioeconomy specialists’ shares ended on 3 February. It is expected that the shares will be admitted to trading on the Frankfurt Stock Exchange on 5 February, with the first listing scheduled for 9 February. Based on the final offer price of 9 euros per share, the company has announced that from the 32.5 million euros raised, it will receive gross proceeds of 31.5 million euros. Now with Brain AG’s IPO, the number of German listed biotech companies in Frankfurt will increase to 16.

Despite recent unrest on the stock market, the Zwingenberg company has accomplished its IPO as planned. Overall, 3,608,054 new shares were issued to new investors at a price of 9 euros each, of which 3,500,000 new shares were placed from a capital increase. In addition a further 108,054 existing shares were placed to cover over-allotments. While the issue price was at the lower end of the originally envisaged price range of 9 – 12 euros, the order book was full, says the company.

From the total proceeds of 32,5 million euros, 31,5 million will go directly to Brain AG. The rest is likely to go the current major shareholders, the family Putsch. The transaction was performed in cooperation with the bank Oddo Seydler who acted as lead manager of the IPO.

Family Office Putsch remains largest single shareholder

The percentage of the new shareholders in the company’s share capital will at least be 21.3%. Approximately 19% of the placement volume was allocated to private investors, who among others include staff from the Brain AG group as well as the investment community at MIG-Fonds, who are former shareholder of Brain AG through various funds. The remaining shares were placed with institutional investors from various European countries. The largest single shareholder of Brain AG is the Family Office coup (MP Beteiliungs GmbH, which recently held a little over 50% of the shares. This threshold now appears to have been reached through the IPO.

© bioökonomie.de/sw

The sky farm, or vertical farming, will not only provide the town’s residents with fresh vegetables, the scientists are also developing greenhouses for astronauts in space. As part of their research to build the greenhouses, engineers from DLR have already grown dozens of lettuces under a pink light in a sterilized laboratory. The greenhouses contain combined life-support systems and do not require soil, but hang in the air whilst their roots are constantly sprayed with a solution containing nutrients. The DLR engineers from the research group Eden (more ...) are currently working on developing special greenhouse modules to supply fresh food to astronauts during future long-term missions.

Skyfarming for the masses

These modules are not just restricted to farming in space; they will also be useful on earth. Together with international partners, the DLR has developed computer simulations with 30m high buildings for inner cities, which will be used for growing vegetables. Each building has five floors, with a floor space of 35 x 74m and each floor is 6m high. Out of the five storeys, four are intended for cultivation, with the ground floor used for offices, cold stores and logistics. The engineers have estimated that annually, 630,000 kg of lettuces and 95,000 kg of tomatoes could be grown per floor. “The plants will be bred under well controlled and optimal conditions in our production factory,” says Conrad Zeidler from the DLR Institute of space systems. “Our lettuces and tomatoes taste no different to those you buy in the supermarkets today.”

Cultivation without pests and pesticides

The vegetables are grown in a mixture of water and nutrients and do not require soil. The whole system is hermetically sealed so that weeds and pests cannot penetrate the modules. As a result, pesticides and herbicides are not neccessary. The plants grow in several tiers one above the other. Light-emitting diodes provide them with exactly the amount of light they need. The water, in which they grow, is administered through a circuit and is recycled over and over.

Life on Mars

The scientists are concentrating on highly perishable vegetables or fruit with a high water content such as lettuce, cucumbers and tomatoes – food that cannot be stored easily. Thus it makes more sense to grow these vegetables in space. The greenhouses in space will contain combined life-support systems, which use recycled urine to manufacture fertilizer, helping to grow the food in an environment conducive to Mars and the Moon. Aside from providing the astronauts with nutritional benefits, the plants produce oxygen and give off a lot of water, which can be used for drinking. The DHL engineers hope that vertical farming can also be implemented in dry zones. Because little water is lost, just the amount that the plants store, water is easily replenished than with irrigation, a method that uses large amounts of water. And the researchers have set themselves a goal: once all stages have been completed the first greenhouse will be tested for nine months in 2017 in an inhospitable environment in the Antarctic.

The hidden part of the plant – the tuberous root – that makes up 30% of the plant, however, is discarded. In Europe alone, 800,000 tonnes of chicory roots are generated during the production of chicory salad each year. Currently, after harvesting the chicory leaves, the roots are disposed of as compost or in biogas plants. Wanting to make use of the waste, researchers at the University of Hohenheim have now succeeded in generating hydroxymethylfurfural (HMF) from the chicory plant’s discarded roots. Bio-based HMF is a basic material used in the production of plastic bottles, nylon or polyester. In addition, HMF based on chicory is of higher quality than when its made from crude oil and it is also not a competitor in the food industry. These modules are not just restricted to farming in space; they will also be useful on earth.

The consumer knows chicory as a lettuce and until now outside of a culinary context, chicory has received little attention. However, it's the roots of the white-yellowy buds that are now being looked at as a valuable resource for the bioeconomy. Until now, this part of the plant ends up at composting plants, and only a fraction is used to produce biogas, because the yield of biogas is too low in order to generate electricity efficiently. In contrast to the food industry, scientists at the University of Hohenheim in German are focusing on the non-edible part of the chicory plant. “The root makes up approximately 30% of the plant. The stored carbohydrates are not fully used for the formation of the buds and valuable reserve substances remain. However, the roots can only be used once of chicory growing and have to be thrown away after the buds are harvested,” explains agricultural biologist Dr Judit Pfenning.

In a windowless room in the experimental station of the Hohenheim campus, the walls are covered with three-story shelves holding numerous tubs lined with pond foil. The tubs contain plastic baskets in which the 15-20 cm long roots are placed upright. Over a period of three weeks, these roots grow into chicory buds ready to sell.

An aquarium pump waters the plants with a nutrient solution. The room is kept dark so the salad leaves do not lose their yellow pastel shade or develop any of the bitter substances typical for chicory.The commercial production of chicory salad on the basis of water does not look much different – but a lot bigger: the biennial chicory plant only spends the first five months in the fields. In mid-October, the leaves are mulched and the roots are harvested, stored in a cool place, and then brought to the growing rooms.

Bio-HMF more valuable than crude oil-based chemicals

In a laboratory, Prof. Dr Andrea Kruse demonstrates just how valuable the root really is. In the background you can see pencil-high stainless steel tube reactors filled with chopped chicory roots and water. After adding diluted acid into the ultra-stable pressure container, it is heated up to a temperature of 200 degrees. Afterwards, the watery product is processed in further steps, which are kept confidential. At the end of this process their research associate Dominik Wüst looks at the result: unpurified hydroxymethylfurfural in the form of yellow-brown crystalline powder. This is one of the 12 basic chemicals, which will be used in the future in the plastic industry. It serves as a raw material for nylon, perlon, polyester, or plastic bottles – so-called PEF-bottles, not the PET-bottles. On the wholesale market, it is currently worth 2000 euros per kilo.

Chicory-based HMF in the bioeconomy

Until now, chicory HMF has been obtained by crude oil. As part of a previous research project, Prof. Dr Kruse found a way to extract the basic chemical HMF from fructose. But she believes that HMF made from chicory roots is a more sophisticated source because it does not compete with food resources. “Fructose is edible. There are better uses for it than extracting HMF.” This is not the case with chicory roots, which are inedible. “Until now, they were waste,” she says. There is another aspect that makes the project even more likely to be successful: “The chicory root is not only perfectly suited for the production of HMF because it is waste,” says Dr Kruse, “it also produces a chemical of higher value than the crude oil-equivalent.” This means that PEF-bottles made out of chicory-HMF could be thinner than bottles made of crude oil-PET, resulting in less transportation costs and is better for the environment.

Quality guarantee

As promising as the results are, the researchers still have to overcome another challenge in order for the bio-based plastic chemical to actually penetrate its fossil fuel competitors. “The root is only of interest for the industry if we can guarantee permanent quality,” explains Dr Kruse.

Currently, genome editing has mostly been earmarked for medical applications, but its use in plant breeding could potentially be very promising. However, there is the controversial question of whether plants that have been subject to genome editing will fall under the GMO bracket. According to international scientists, among them Detlef Weigel of the German Max Planck Institute for Developmental Biology in Tübingen, this won’t be the case. They have proposed a regulatory framework for genome editing in plants that was published in the journal Nature Genetics (2016 online publication).

Floods, heat and fungal infestations are stress factors that affect the growth of plants and reduce the yield. Plant researchers aim to develop plants that are resistant to these damaging factors. Now, using the latest gene editing technology CRISPR/Cas9, plant scientists are euphoric that they can use the genetic “scissors” to simply target and change specific genes. But isn’t fiddling with plants using genome editing tools genetic engineering? The researchers, including Detlef Weigel, director at the German Max Planck Institute for Developmental Biology in Tübingen are convinced that these technologies will be put to good use and have great potential for plant research. In reports of genome editing, metaphors such as genome surgery or genetic scalpel are often used. “The conventional genetic engineering of plants can be compared to open-heart surgery when opening up the entire chest,” explains Weigel. Genome editing on the other hand is a more minimally invasive procedure, argues Weigel, because one can precisely determine where in the genome a change is meant to happen.

Changing genes quickly and precisely

The advantage of genome editing: this technology can determine precisely determine at what point the genetic changes are to be carried out. Usually, it is sufficient to replace or remove just a single letter in the DNA. Using this minimal genetic intervention, crops may be altered such as wheat, rice or corn so that they are more resistant to fungal attack or suffer less from the heat. As part of a study published in the journal Nature Genetics, the researchers also addressed the disadvantages of conventional genetic engineering techniques. Planting genes from other plant species or organisms, has been possible for a long time. But which genes ultimately end up in the genome cannot be controlled. Therefore, according to Weigel, many candidates would have to be screened until you have a plant with the desired properties.

At the same time, the researchers reference the standard tools of plant cultivation – such as the crossing of plants or the use of chemicals or radiation – where mutations are also triggered in the genome. According to the study, the achievements of plant breeding are not always better and “finding promising specimens” is also a very lengthy and costly process. Compared to plants that are cultivated with genome editing, these products may be marketed without market authorisation.

No special regulations for approval

In their appeal, Weigel and his research colleagues speak out for a change in thinking in the approval of genome-edited plants. After which, these plants should, in principle, not be treated differently from products of conventional breeding. Weigel makes reference to the German genetic engineering law that classifies only organisms that have been genetically engineered, whose “genetic material has been altered in a way that does not occur naturally by crossing and or natural recombination.” The legislation then has no reason to assess the plants produced by genome editing unlike conventional breeding products.

Documenting the development process

In view of the above, Weigel and his colleagues from China and the US are submitting proposals on what should be taken into account during the development of gene-edited plants. During the development phase, they advise on minimising the risk of propagation in open land. Secondly, the resulting DNA changes should be accurately documented and thirdly, it has to be taken into account that CRISPR/Cas9 techniques may in the beginning require insertion of foreign DNA, if this is the case, it has to be documented that the foreign DNA has been completely removed without a trace. Finally, if a gene has been replaced by a gene from a different species, it should be stated how close the two species are related to each other.

According to the study, all these points should be strictly adhered to upon approval of new plant species. The European Union has not finalised their assessment, but in both Germany and Sweden, the responsible authorities have already declared that certain genome-edited varieties in principle are the same as plant varieties of conventional breeding. "An important aim of breeding is to make the supply of agricultural products more sustainable. Genome editing can, for example, help when breeding for resitance to fungal infection without the use of chemical pesticides. We cannot miss out on such opportunities,” explains Weigel.

In Germany, the majority of this precious mineral ends up as fertilizer for arable land. A neglected source of phosphate is animal meal, which is produced from slaughterhouse waste and subsequently fed to livestock or incinerated. Now researchers from the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg have developed a new method to recover the important mineral from the animal meal. The fluidized bed unit filters out harmful substances from the ashes such as heavy metals so that the phosphate can be reused as the raw material for agricultural fertilizer.

According to the Federal Ministry for Food and Agriculture (BMEL) every year 530,000 tonnes of phosphate is imported to Germany from countries such as China, the US or Russia, because it does not have its own natural supply. As a vital element for humans and plants, the precious mineral is essential for both the food industry as well as for animal feed and fertilizer manufacturers. At the same time, vast amounts of the valuable nutrient are lost through sewage, sewage sludge and animal meal. The main source of the largely unused phosphorus is animal meal, which is obtained through slaughterhouse waste. This waste - animals’ teeth, hooves or bones is then processed into meat and bone meal amassing over 200 tonnes in Germany alone every year. The ground scraps are fed in part to livestock. But the majority is incinerated together with other waste and is therefore contaminated with heavy metals such as mercury, lead, arsenic or nickel. As a result, the phosphate content in the ash which is around 16 percent, cannot be used.

Separating heavy metals from ash

But this is about to change. Researchers from IFF in Magdeburg have found a way to tap into this source of phosphates and recycle the valuable raw material from animal meal. “We burn meat and bone in a special way that enables us to recover an important mineral from it,” explains Patric Heidecke, research manager at the Fraunhofer IFF. The new method of recycling is based on the same principle of burning animal feed. But unlike before, the poisonous heavy metals are carefully separated from the ashes.

Airflows separate the good ash from the bad

The principle entails loading meat and bone meal in a fluidized bed unit heated to 850 degrees Celsius, where air flows continuously into a combustion chamber and mixes the meal with hot quartz sand. The mass ignites and the organic particles burn completely. Due to the airflow, the combustion gas produced also contains a large part of ash. This is then put through a cyclone separator. It separates the good, clean ash from the bad, which contains toxic heavy metals. To do this, the researchers slow the airstream so that the ash sinks to the floor, while the heavy metal and the ash particles, which are smaller than a tenth of a millimeter, remain airborne. They are trapped and disposed of later.

Fluidized bed unit before practice test

“Just like the phosphorus material extracted from those deposits, the ash could be processed into fertilizer. In purely mathematical terms, this could cover around five percent of annual demand for phosphate fertilizer in Germany,” says Heidecke. Since it is not only suitable for meat and bone meal as fuel but also as recycling from sewage sludge, Heidecke is certain that this new method will have established itself in ten years time.

© biotechnologie.de/bb

Now further growth will be financed through the stock exchange. The bioeconomy pioneers from Zwingenberg had speculated on a possible floatation for a long time, and now it’s definite. On 5th January, Brain AG officially announced their IPO plans and in contrast to many other German biotech companies, have decided to float on the Frankfurt stock exchange. “We see ourselves as an icebreaker for the bioeconomy in the financial centre Frankfurt,” CEO Jürgen Eck emphasises to biotechnologie.de. There has not been a biotech IPO on a German stock exchange in Germany since 2007. There are currently 19 German listed biotech companies, 15 of which are listed in Frankfurt.

Most recently, four German biotech companies ventured onto the trading floor, albeit all abroad. In 2015, the diagnostic specialist Curetis opted for an IPO on Euronext as did Hallensier Probiodrug the previous year. Drug developers Affimed and Pieris struck out across the Atlantic and listed on NASDAQ, which according to a capital market study published in autumn by BIOCOM AG (more ...), has become a serious alternative for European biotech companies. Overall, European biotech companies experienced an upswing on the stock markets in 2015, with Paris and London especially attractive for biotech companies. Stem cell bank Vita34’s IPO in 2007 was the last German biotech flotation to take place in Frankfurt, however, Wilex was the last drug developer to venture on the German stock exchange in 2006. Since then biotech companies have steered clear of Frankfurt, but Brain AG could be the company to break the ice. “The time is ripe for a bioeconomy IPO in Germany. We believe Frankfurt, as a financial centre, is strong enough. We don’t see any reason why the bioeconomy should not be represented here,” Brain AG’s CEO Jürgen Eck told biotechnologie.de. For a long time now, the German stock exchange has tried to appeal once more to technology companies. Most recently, the German Stock Exchange Venture Network was launched to facilitate growth financing. A listing in the US was out of the question. “The aim of our IPO is a significant capital increase to finance our growth. We are not looking for an exit strategy,” explained Eck.

IPO for industrial biology in Germany

As stated in the German newspaper Handelsblatt Brain AG’s IPO is planned to take place in February. ODDO Seydler Bank AG is acting as Sole Global Coordinator and Bookrunner in the transaction. Blaettchen Financial Advisory GmbH is supporting the Company as IPO consultant and wants to open the company up to institutional and other private investors. “Now we are ready to increase our independence on the financing side, in order to properly benefit from the tailwind in our industry. The planned IPO will bring the expansion of our company an important step forward,” stresses Eck in a press release. The proceeds from the IPO – a sum in the tens of millions is expected – will be invested in the further expansion of research collaborations as well as in the continued development of its products on a more global scale, i.e. beyond the German-speaking countries and Europe. Brain AG focuses above all on biobased ingredients for the food industry, specialty chemicals and the cosmetic industry. According to Jürgen Eck, several new product launches are on the horizon, such as a natural product as a salt substitute. “This is currently in advanced consumer tests,” says Eck.

Existing shareholders to stay on board

Currently, the company says 51% of Brain AG’s share capital is held by the family office MP Beteiligungs GmbH, around 20% by MIG, a group of venture capital funds, and the remaining 29% is in the hands of the founders and the senior management. The “original shareholders” will, according to company information, continue to hold a significant stake in the company after the planned IPO, which is today a corporation of six companies with a total of 240 employees. The offer will consist of initial public offerings in Germany and Austria and private placements in certain jurisdictions outside of these countries, as well as outside the US. Ten percent of the shares offered will be reserved for retail investors. Plans are being made to provide dedicated subscription channels – also via the company itself – for this particular purpose. Overall, the IPO proceeds will reach the double-digit million range, say company insiders. It will be the first German biotech IPO from a company that does not develop medicines, but develops biobased industrial solutions for a variety of industries.

Brain AG is pioneering the bioeconomy

Brain AG is a German model company in bioeconomy. The speciality of Brain’s employees: to develop untapped, powerful enzymes, microbes or natural materials and make them commercially useful. Whether in the cosmetic industry biomining, or natural products chemistry the objective pursued is the same in each case. On the basis of its microbe archive, either classic chemical processes are replaced by resource-efficient bio-based procedures, or by borrowing from nature’s toolbox, entirely new products with superior characteristics can be created. According to the company, its overall economic performance in the financial year 2015/15 was 25.7 million euros in total. The division “Bioindustrial”, which focuses on the development and marketing of its own products makes up more than half of the Group’s operating performance, accounts for 53% in the fiscal year. And then there are the proceeds from the business unit “Bioscience”.

Brain AG: From research partner to corporation

In recent years, with the knowledge of microbial diversity, Brain AG has established itself as a strategic research partner for the industry and is now working together with more than a hundred companies, including many industry giants such as Evonik, BASF, DSM and Symrise. The Zwingenberg group is involved in a whole range of industries: from chemistry, nutrition and cosmetics to the mining industry. The Group has also made the headlines among other things when they formed an alliance called “Natural Life Excellence Network 2020” (Natlife2020), which was coordinated by Brain AG and funded by the Federal Ministry of Research, for which they received several million euros. In August 2015, the company announced that biobased ingredients for food – such as special enzymes for the production of lactose-free dairy products – is another of the Group’s research areas.

Obtaining majority stakes to grow

In recent years, Brain AG has continued to establish itself increasingly through acquisitions in five majority as well as two minority stakes. Based on this strategy, the company has set itself up further in the value chain and has acquired more expertise in several areas ranging from production to sales. Recently, the Zwingenberg corporation took over 51% of Weissbiotech GmbH in Ascheberg near Munster and the white biotech France Sarl in Chanteloup-en-Brie, near Paris, to jointly conquer the market in industrial enzymes. In mid-2014, the natural stone specialist Analyticon from Potsdam was brought into the Group. In 2012, Brain AG gained a portfolio of cosmetic companies, however not to develop its own products, but to manufacture them and bring to market. Now the company plans to succeed in the field of nutrition – such as natural food ingredients – or in medical technology. “In the future we want to, for example, get involved in the field of wound care and establish market entry,” Eck stressed in summer when he took on the role of CEO at the company. With the planned IPO, the Group announced that from the 1st January 2016, former supervisory board member Georg Kellinghusen would be appointed as CFO.

© biotechnologie.de/sw

Over the past ten years, an international team of plant scientists have put great faith in decoding the wheat genome. Now the International Wheat Genome Sequencing Consortium (IWGSC) has announced that that it will be able to present the complete sequence of bread wheat by 2017. The scientists are convinced that the knowledge of the molecular blueprint of the crop will spur the development of new resistant and high-yielding varieties of wheat.

The decoding of the wheat genome is a herculean task. With 17 million base pairs (17Gb), the bread wheat genome (Triticum aestivum) is not only almost six times as large as the genetic material of humans, it is also extremely complex. In each cell six copies of the genome are present. Researchers have been trying to figure out the molecular blueprint of the crop since 2005. Under the umbrella of the International Wheat Genome Sequencing Consortium (IWGSC), 1,100 researchers from 55 countries are working together on the project, including scientists from the Leibnitz Institute for plant genetics and cultivated plants in Gaterleben (IPK). Currently, 14 of the 21 chromosomes have been identified, to which the scientists at the IPK have contributed significantly. Plant genecist Nils Stein from the IPK who is co-leading the collaborative with his colleagues in Canada and the US, coordinated and carried out the first pan-genomic wheat sequences so that the first look into the organisation of this very complex genome was possible.

New analysis technology furthers genome decoding

Thanks to a new analysis method, after ten years the researchers from Leibniz are close to reaching their goal. The reason: with the help of the Israeli company NRGene, a subproject on genome sequencing the bread wheat “Chinese Spring” can be decoded sooner than planned. Stein now estimates that by this means the complete wheat DNA will be decoded by 2017 at the latest.

Composing data records faster

“The procedure enables much faster and a better composition of comprehensive Illumina sequence data. The new bread wheat de novo shotgun assembly made by NRGene represents a major breakthrough for the IWGSC integrated strategy towards delivering a high quality reference sequence for each of the 21 bread wheat chromosomes,” explains Nils Stein. Before the complete genetic blueprint has been discovered the information on every single chromosome has to be pieced together like a puzzle with a reference sequence. Even the chairman of the international consortium believes the two-year goal is realistic. Kellye Eversole welcomed the results: “The preliminary results obtained by NRGene are impressive. We have been waiting for a number of years to have a high quality whole genome sequence assembly that would complement our chromosome based strategy and accelerate the delivery of the sequence, and in all likelihood deliver a high quality reference sequence for the wheat genome in less than two years.”

New perspectives for plant breeding

The reference sequence of the wheat genome allows plant researchers and breeders, in particular, the opportunity to understand the genetic blueprint of this important agricultural crop for the first time. “This new wheat genome sequence will provide wheat researchers with an exciting new resource to identify the most influential genes important to wheat adaptation, stress response, pest resistance, and improved yield,” stresses Curtis Pozniak, project leader am Crop Development Centre at the University of Saskatchewan. The results of the sequencing of the wheat genome are currently being presented at the 24th Plant & Animal Genome Conference in San Diego.

In its 81st year, the world’s largest trade fair of its kind has met a record: 1,660 exhibitors from 65 countries are represented this year at the annual event. The Green Week, however, is not just about displaying culinary delights from all over the world; the bioeconomy has also found a firm foothold at the international exhibition. Once again visitors will be convinced at how biobased raw materials are becoming increasingly more common in our daily lives at the specialist trade fair within the Green week for bioeconomy – nature.tec in Hall 4.2. An exhibition put on by the Bioeconomy Council and the “renewable office” has already attracted a large number of visitors.

Whether its exotic crustaceans, kerosene mangos from Sierra Leone, Moroccan saffron or Bavarian beer (the German beer-purity law turns 500 years old this year), the International Green Week is a paradise of all culinary delights and now in its 81st year truly deserves its reputation as the world’s largest gourmet-exhibition. In addition to sensations for discerning taste buds, the Green Week is also the world’s largest trade fair for agriculture, nutrition and horticulture, and is likely to pull in around 400,000 visitors again this year. Organisers of the fair are the German National Farmers’ Union and the Federation of German Food and Drink Industries (BVE).

Bioeconomy’s special exhibition

Participating for the ninth time is the special bioeconomy exhibition nature.tec held within the framework of the International Green Week. In Hall 4.2, the focus is on the efficient and renewable use of biobased raw materials. Organised by the Agency of Renewable Resources (FNR), the National Farmers’ Union and the Federation of Bioenergy, many companies and research institutes will present biobased products from agriculture and forestry for the textile, building and automobile industries. From the cultivation of suitable power and industrial plants, raw material extraction and processing, through to electricity, heat and fuel production – all levels of the production chain are represented at the specialised bioeconomy trade show.

Building with wood

Wood as a natural raw material has been regarded as a versatile building material for a long time. But it is increasingly experiencing competition. Natural insulating materials made from flax or hemp, flooring made from linoleum, sisal or cork, natural paints and plaster with binding agents from linseed oil or pigments from plant dyes, offer a wide variety of building materials for interior and exterior designs. With its travelling exhibition BAUnatour, homeowners are demonstrated the highest structural standards of renewable materials. From inside the mobile exhibition van, independent experts share information about the benefits and properties of natural building materials.

© bioökonomie.de/pg

Viele Frauen träumen von langen und dichten Wimpern. Die Kosmetikindustrie bedient sich hierbei einem Mittel, das aus der Augenheilkunde bekannt ist: Prostaglandin. Das Gewebehormon wird seit Langem in Augentropfen zur Behandlung des grünen Stars eingesetzt und hat den Nebeneffekt, Wimpern wachsen zu lassen. Herkömmliche Wimpernseren mit dem in abgewandelter Form eingesetzten Gewebehormon versprechen ein Wimpernwachstum von 80 Prozent innerhalb von 30 Tagen. Experten warnen jedoch vor den Nebenwirkungen der wimpernverlängernden Seren. So könnte sich der Augeninnendruck erhöhen, wenn die Flüssigkeit ins Auge kommt. Auch sind Rötungen und ein Brennen der Augen sowie Verfärbungen der Wimpern und des Augenlids möglich.

Natürlich und ohne Nebenwirkungen

Forscher am Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam-Golm haben nun einen rein pflanzlichen Wirkstoff entdeckt, der ebenfalls die Wimpern wachsen lässt. Um welche natürliche Substanz es sich dabei handelt, wollen die Forscher derzeit noch nicht offenlegen. Doch die Tests mit dem neuartigen Wimpernserum sind vielversprechend. „Unsere Arbeiten zeigen, dass die neue Formulierung Ergebnisse liefert, die vergleichbar mit denen von Prostaglandinprodukten sind“, so der Leiter der Abteilung Biomaterialien und Healthcare am IAP, Joachim Storsberg. Die Wimpern wachsen zwar etwas langsamer, dafür traten keine Nebenwirkungen auf.

Studentin für Erfindung ausgezeichnet

Das neuartige Wimpernserum wurde von der Studentin Mine Kaya im Rahmen ihrer Bachelorarbeit in Storsbergs Abteilung entwickelt und untersucht. Dafür wurde sie von der Vereinigung der Seifen-, Parfüm-, Kosmetik- und Waschmittelfachleute SEPAWA mit einem Förderpreis ausgezeichnet. „Gerade sind wir dabei, unsere Verfahren für die Anwendung zu optimieren. Zudem entwickeln wir noch weitere naturbasierende Alternativen zu den Prostaglandin-Präparaten“, sagt Storsberg.

bb

Die Kreuzung zweier Maislinien, die über Generationen hinweg durch Inzucht kleinwüchsig und ertragsarm wurden, bringt manchmal äußerst starke, ergiebige und gesunde Nachkommen hervor. „Wie dieser sogenannte Heterosis-Effekt funktioniert, kann bis heute niemand erklären“, erläutert Albrecht Melchinger vom Fachbereich Angewandte Genetik und Pflanzenzüchtung der Universität Hohenheim die rätselhafte Eigenschaft. Gleichwohl ist der Effekt bereits wichtiger Faktor für die Züchtung von Hochertragssorten geworden. 

Verbundprojekt für die Mais-Züchtung

Bereits seit sechs Jahren versuchen die Forscher im Rahmen des Verbundprojekts GABI-ENERGY, den molekularen Ursachen des Heterosis-Effekts und seiner Rolle bei der Biomasseproduktion auf die Spur zu kommen. Bis Ende 2012 hat das BMBF dafür insgesamt rund 2,7 Millionen Euro investiert. Nun wird das Projekt und die Förderung fortgeführt, unter dem Namen OPTIMAL („Genetic and Biomarker-based Predictive Breeding of Maize Cultivars“). Pflanzenforscher des Leibniz-Instituts in Gatersleben und des MPI für Molekulare Pflanzenphysiologie in Potsdam-Golm sind ebenfalls daran beteiligt. Züchtungsfirmen aus Frankreich und Deutschland liefern die praktische Anwendung der Untersuchungsansätze und deren Auswertung. Das OPTIMAL-Projekt wird über drei Jahre vom BMBF mit weiteren 2,6 Millionen Euro unterstützt.

Für die Nahrungversorgung ist Hybridmais von enormer Wichtigkeit. Die Landwirtschaft hat dem Heterosis-Effekt dabei einiges zu verdanken – ohne ihn wäre die Züchtung neuer Hybride undenkbar. Nicht zuletzt, da es sich um eine zweigeschlechtliche Pflanze handelt, sind die Kombinationsmöglichkeiten bei der Kreuzung nahezu unbegrenzt. Mit statistischen Vorhersagen wollen die Genetiker diese Möglichkeiten auf ein sinnvolles Maß eingrenzen. Sie bedienen sich dabei auffälliger und eindeutig identifizierbarer Orte im Erbgut der Elternpflanzen. Da man diese sogenannten Marker nachverfolgen kann, lassen sich über die Vererbung bestimmter Gene immer genauere Vorhersagen treffen, wenn man die DNA der Elternpflanzen genau kennt. In der Genomforschung werden immer mehr dieser genetischen Marker identifiziert. Allerdings steuern so viele Gene den Heterosis-Effekt, dass es für Forscher sehr schwierig ist, hier Klarheit zu verschaffen.

Die Stoffwechselprodukte messen

Der Hohenheimer Forscher Melchinger konzentriert sich dabei auf die genetischen Informationen, die den Stoffwechsel der Maispflanze regulieren. Dieser wiederum lässt sich in hunderte einzelne Faktoren unterteilen, die Metabolite genannt werden: verschiedene Zucker, Aminosäuren und organische Säuren. Christian Riedelsheimer, Doktorand der Arbeitsgruppe, erwartet, dass sich beispielsweise die Zuckerkonzentration in den Blättern der Nachkommen nachweisbar erhöhen müsste, sofern sich der Heterosis-Effekt auch auf Ebene des Metabolismus der Pflanzen abspielt. Dieser Ansatz mache des Rätsels Lösung greifbarer, hoffen die Forscher, weil auf der Stoffwechselebene weitaus weniger Gene am Heterosis-Effekt beteiligt sind. „Wenn das so ist, lassen sich Rückschlüsse ziehen, die den Heterosis-Effekt der gesamten Maispflanze verständlicher machen“, erklärt Riedelsheimer.

Die Datenmengen, die durch genetische Analysen entstehen, können mit statistischen Verfahren ausgewertet und bestimmte Szenarien im Vorfeld modelliert werden. „Wir müssen heute nicht mehr alles auf Versuchsfeldern anpflanzen, um zu sehen, ob die Nachkommenschaft die gewünschten Eigenschaften besitzt. Wir können am Schreibtisch eine statistische Vorauswahl treffen“, so Melchinger. So könne die Züchtung einer neuen Maishybrid-Sorte künftig wohlmöglich von fünf Jahren auf nur drei verkürzt werden.

 

Gerste ist in Deutschland nach dem Weizen die wichtigste Getreidepflanze. Während Wintergerste überwiegend als Tierfutter verwendet wird, kommt Sommergerste vor allem für die menschliche Ernährung und als Braugerste für Bier zum Einsatz. Um dauerhaft gesunde und widerstandsfähige Pflanzen anzubauen ist es wichtig, die Resistenz der Gerstensorten gegen verschiedene Krankheitserreger ständig zu verbessern, da diese sich verändern und immer stärker ausbreiten. Das hat viele Gründe: Durch Importe neuer Pflanzen werden auch neue Erreger eingeschleppt – oder sie kommen auf ganz natürliche Weise in unsere Gefilde, etwa durch Wind. Klimatische Veränderungen beschleunigen und verstärken jedoch das Problem: „Durch die milden Herbsttemperaturen sterben Virenträger wie zum Beispiel Läuse nicht ab, sondern infizieren die Wintergerste“, erklärt Brigitte Ruge-Wehling, Züchtungsforscherin am JKI. „Die Pflanzen werden so geschwächt, sind empfänglicher für Pilzkrankheiten und Schäden durch Frost oder Wassermangel und bringen letztlich weniger Ertrag.“

Neue Krankheiterreger erfordern neue Resistenzen

Bislang stand für die Erschließung neuer Resistenzgene nur der primäre Genpool der Gerste zur Verfügung, nämlich die Kulturgerste selbst und eine mit ihr eng verwandte Unterart. Diesen Genpool nutzen Gerstenzüchter bereits seit Jahrzehnten als genetische Ressource. Durch die starke Verbreitung neuer Krankheitserreger wird es für eine nachhaltige Gerstenzüchtung zunehmend wichtiger, auch die Gerstenwildart H. bulbosum als Quelle für neue genetische Merkmale zu erschließen.

Die Aufgabe der Züchtungsforscher am JKI ist es, sogenannte molekulare Marker zu entwickeln. Marker sind kurze DNA-Abschnitte, deren Sequenz und Position im Genom den Züchtern genau bekannt sind. Zudem lassen sie sich mit einem Merkmal oder einer bestimmten Eigenschaft der Pflanze in Verbindung bringen. Die Marker sind nicht unbedingt identisch mit dem Gen für diese Eigenschaft, befinden sich aber immer in dessen Nachbarschaft. Sie dienen deshalb als Orientierung, gewissermaßen als Ortsschilder im Erbgut, die etwa auf ein Pilzresistenz-Gen hinweisen. Gelingt der Nachweis der flankierenden Ortsschilder (Marker), so ist mit hoher Wahrscheinlichkeit auch der Gen-Ort selbst in der Nähe. Die Daten über solche Kopplungen von Ort und Eigenschaft werden in Gen-Karten eingetragen, die es inzwischen von fast allen wichtigen Nutzpflanzen gibt.

Bisherige Forschungsarbeiten des Julius Kühn-Instituts haben gezeigt, dass die Gerstenwildart H. bulbosum zahlreiche züchterisch bislang noch nicht erschlossene Resistenzgene gegen gefährliche Krankheitserreger der Gerste trägt. Durch einen Vergleich des Erbguts der Kulturgerste mit der Gerstenwildart wollen die TRANS-BULB-Forscher neue Resistenz-Marker finden und mit ihrer Hilfe die dazwischen liegenden, neuen Resistenzgene ins aktuelle Zuchtmaterial einkreuzen. Seit Januar 2012 unterstützt das Bundesministerium für Bildung und Forschung (BMBF) das Vorhaben mit rund 600.000 Euro im Rahmen der Förderinitiative „Pflanzenbiotechnologie der Zukunft“. Beteiligt sind neben dem JKI das Leibniz Institut für Kulturpflanzenforschung (IPK), die Landesanstalt für Landwirtschaft (LfL) Freising-Weihenstephan sowie sechs deutsche Gerstenzüchtungsunternehmen.

Schneller und präziser testen

„Der Vorteil dieser Methode ist, dass in der Züchtungspraxis zeitaufwändige Resistenztests auf ein Minimum beschränkt werden können. Schon am ersten Blatt der Kreuzungsnachkommen lässt sich bereits die DNA isolieren und feststellen, ob sie auf ihren Chromosomen die Segmente der Gerstenwildart tragen, die die Resistenz bedingen oder nicht. Das spart Zeit“, sagt Forscherin Brigitte Ruge-Wehling. Sie ist für die Herstellung der Marker verschiedener Resistenzen verantwortlich ist. Weitere Kollegen vom JKI führen Resistenztests gegen Viren und Nematoden durch, um das Vorhandensein der Marker mit der jeweiligen Resistenz in Beziehung setzen zu können.

Am Ende des Projekts sollen die DNA-Marker den Züchtungsbetrieben als Werkzeuge zur Verfügung gestellt werden. Damit können diese schnell und mit hoher Vorhersagegenauigkeit Gerstenpflanzen mit den gewünschten neuen Resistenzen auslesen und die Züchtung neuer Sorten vorantreiben. 

Autorin: Fabienne Hurst

Kerstin Kaufmann liebte schon als Kind den großen Garten ihres Elternhauses in der Altmark in Sachsen-Anhalt. Nicht nur für die lebendige Pflanzenpracht hat sie ein Faible entwickelt. Auch für alte botanischen Atlanten und Naturkunde-Bücher kann sie sich begeistern. „Es ist die Vielfalt der Blütenfarben und -formen, die mich fasziniert“, sagt Kaufmann. Doch eine Blüte ist nicht nur äußerlich betrachtet ein Meisterwerk. Sie ist das Ergebnis eines komplexen Entwicklungsvorgangs, in der Hunderte Gene und Proteine räumlich und zeitlich fein aufeinander abgestimmt in Aktion treten. Wie bei einem Orchester gibt es auch bei der Blütenentwicklung dabei einige Akteure, die den Einsatz geben. Zu den wichtigsten „molekularen“ Dirigenten in der Blüte gehören sogenannte Transkriptionsfaktoren. Es sind Proteine, die an die DNA andocken und dort andere Gene gezielt an- und abschalten.

Vielschichtiges Konzert mit Hunderten von Faktoren

Wie funktioniert das molekulare Zusammenspiel in der Blütenentwicklung? Gibt es bestimmte Meister-Regulatoren in der Welt der Pflanzen? Diese Fragen haben Kerstin Kaufmann nicht mehr losgelassen, seit sie als Braunschweiger Biologiestudentin bei einem einjährigen Aufenthalt 1999 im schwedischen Uppsala mehr über die Evolution der Blütenentwicklung erfahren hatte.  „Ich fand das extrem spannend und habe dann zurück in Deutschland nach Forschern gesucht, die sich hierauf spezialisiert hatten“, erzählt sie. Am Max-Planck-Institut für Züchtungsforschung in Köln wurde sie in dem Pflanzengenetiker Günter Theißen fündig, der kurz darauf an die Universität Jena wechselte. Mit im Gefolge: Kerstin Kaufmann, die sich sowohl in Diplom- wie auch in der Doktorarbeit damals schon mit Schlüsselregulatoren der Blütenentwicklung, den sogenannten MADS-Box-Faktoren beschäftigte.

Jeder Zelltyp hat eigenes regulatorisches Profil

Das Lieblingsstudienobjekt der Biologin ist die Ackerschmalwand Arabidopsis thaliana. Die kleinen, weißen Blüten der mit Raps verwandten Pflanze können optisch zwar nicht mit prächtigen Orchideen oder Löwenmäulchen mithalten. Dafür sind die Pflänzchen ideal für genetische Experimente geeignet. In keiner anderen Pflanze sind deshalb die Schlüsselfaktoren für die Blütenentwicklung so detailliert beschrieben wie bei Arabidopsis. „Wie das Zusammenspiel der Hauptschalter auf molekularer Ebene funktioniert, darüber wissen wir jedoch kaum etwas“, betont Kaufmann. Mit einem Arsenal an neuesten molekularbiologischen Methoden will die Forscherin deshalb klären, wie genau Transkriptionsfaktoren an bestimmte Erbgut-Abschnitte binden und welche Gene sie an- oder ausknipsen. Bei dieser Detektivarbeit kommt Hightech zum Einsatz: Sequenziertechniken der neuesten Generation, Proteomanalysen und Chromatin-Experimente. „Ohne einen Blick auf die Epigenetik kann man das molekulare Geschehen nicht verstehen“, betont Kaufmann. Ihre Vision: „Wir versuchen, für jeden Zelltyp in der Blütenentwicklung eine regulatorische Signatur zu ermitteln“, so die Biologin.

Einem Meister-Regulator auf der Spur

Einem Master-Regulator namens AP1 ist Kaufmann bereits während ihrer Postdoc-Zeit ab 2005 an der Universität Wageningen in den Niederlanden auf die Spur gekommen, was ihr einen Artikel im Fachjournal Science (2010, Bd. 328, S.85) einbrachte. Marie-Curie-Stipendiatin Kaufmann hat sich dabei in der Universitätsstadt Wageningen äußerst wohl gefühlt. „Die direkte und offene Art der niederländischen Kollegen, aber auch den gebotenen Freiraum zum Forschen habe ich sehr geschätzt“, so die Entwicklungsbiologin. Seit 2011 baute sie eine eigene Arbeitsgruppe in Wageningen auf, wurde Assistant Professor, eine Tenure Track-Option bot die Aussicht auf eine langfristige Stelle. „Doch ich war neugierig auf was Neues“, erzählt Kaufmann. Es eröffnete sich die Möglichkeit, wieder nach Deutschland zurückzukehren: mit einer Bewerbung um den Sofja Kovalesvskaja-Preis der Alexander von Humboldt-Stiftung.

Genomschere CRISPR-Cas erfolgreich eingesetzt

Und im Sommer 2012 gab es Post: Kaufmann bekam den Zuschlag für den drittgrößten in Deutschland vergebenen Forscherpreis: finanziert für fünf Jahre konnte sie so als Gastforscherin bei Bernd Müller-Röber am Institut für Biochemie und Biologie der Universität Potsdam nach weiteren Schlüsselregulatoren der Blütenentwicklung fahnden. „In Potsdam gibt es für Pflanzenforscher eine Super-Infrastruktur“, sagt Kaufmann.

 Ein ideales Umfeld, das sie für wichtige Entdeckungen nutzen konnte. „Wir haben in den vergangenen Jahren immer besser verstanden, wie der regulatorische Code in den verschiedenen Blütenorganen funktioniert“, berichtet sie. Hierbei ist ihr Team insbesondere einigen epigenetischen Masterregulatoren auf die Spur gekommen. Um sie aufzuspüren, bediente sich ihr Team der Genomschere CRISPR-Cas9, der derzeit wohl angesagtesten molekularbiologischen Technik. „Auch für unsere Arbeit ist dieses Werkzeug revolutionär, weil wir damit nicht-invasiv spezifische Mutationen im natürlichen Erbgut-Kontext auslösen können“, sagt Kaufmann. Das führe zu deutlich aussagekräftigeren Erkenntnissen. 

Ihre Forschungen wird die Pflanzenwissenschaftlerin künftig im hochmodernen Rhoda-Erdmann-Haus der Berliner Humboldt-Universität fortführen. Dort ist Kerstin Kaufmann seit Oktober 2016 Professorin für Pflanzliche Zell- und Molekularbiologie. Gemeinsam mit ihrem zehnköpfigen Team, das mit aus Potsdam in die Hauptstadt gewechselt ist, will sie fortan auch in Berlin-Mitte das molekulare Konzert der Blütenentwicklung entschlüsseln.

Autor: Philipp Graf

„Das ist einfach toll, man ist kreativ, sitzt nicht am Computer, man kann feilen, sägen, löten, hämmern, und am Schluss nimmt man etwas mit nach Hause, woran man sich erfreuen kann.“ In den fünf Jahren, die Barbara Reinhold einen Kurs bei einer Goldschmiedin besucht, hat sie schon einige Ringe und Ketten angefertigt. Und immer nach eigenen Entwürfen: „Das ist so ähnlich, wie wenn man ein Experiment plant – man muss sich genau überlegen, wo sich Schwierigkeiten verbergen könnten und welchen Schritt man zuerst geht.“ Am liebsten fasst sie geschliffene Halbedelsteine in Gold.

Arbeiten in Asien und Afrika

Da trifft es sich gut, dass die agile Forscherin regelmäßig Expeditionen nach Namibia unternimmt, wo es große Vorkommen an solchen Mineralien gibt. Gerade ist sie wieder aus dem südafrikanischen Staat zurückgekehrt. Mit Wissenschaftlern der Universität Windhoek pflegen sie und ihr ebenfalls forschender Ehemann Thomas Hurek eine fruchtbare Zusammenarbeit.

Seit einem Jahr nun wollen sie mit Bauern vor Ort die Kultivierung von Hülsenfrüchten etablieren, die mit Knöllchenbakterien, so genannten Rhizobien, eine Symbiose eingehen. In unseren Breiten wird das Saatgut von Hülsenfrüchten schon seit Jahrzehnten mit den Bakterien behandelt, mit dem Effekt, dass Bohnen, Erbsen und Co. an den Wurzeln Knöllchen bilden, in denen die Bakterien leben und aus der Luft Stickstoff binden, mit dem sie wiederum die Pflanze versorgen. Das ist eine umweltschonende Methode, denn damit muss der Stickstoff, der für das Pflanzenwachstum unerlässlich ist, nicht über Dünger zugeführt werden.

„In den kargen Böden im südlichen Afrika allerdings bilden die Pflanzen aus uns bisher unbekannten Gründen kaum Symbioseknöllchen. Wir versuchen da die passenden Bakterien zu isolieren und den Bauern zu helfen, einen besseren Stickstoffeintrag auf ihren Feldern zu bekommen.“ Zunächst, so Reinhold, sei es jedoch schwer gewesen, die Landbevölkerung von diesen neuen Methoden zu überzeugen. Die gute Kooperation mit Forschern vor Ort sowie mit Anthropologen und Ethnologen sei dabei sehr hilfreich, um das Vertrauen der Bauern zu erlangen.

Knöllchenbildung in Getreidepflanzen übertragen

Ihren eigentlichen Schwerpunkt legt Reinhold jedoch auf die Genomforschung an Reis und anderen Getreiden. Dieses Thema zieht sich schon seit der Doktorarbeit Mitte der 80er Jahre durch ihr Forscherleben und brachte viele Aufenthalte in Asien mit sich. Anders als bei den Hülsenfrüchten gibt es jedoch keine Gräser oder Reissorten, die zu dieser Knöllchenbildung in der Lage sind. Aber ihre Wurzeln beherbergen durchaus Bakterien, die im Wurzelinnern leben und dort auch Stickstoff binden können, in einigen Wildgräsern sogar sehr effizient. Die Mikrobiologin untersucht darum die genetischen Bedingungen sowohl bei den Pflanzen als auch bei den Bakterien, um deren Kooperation im Wurzelinnern zu verstehen und zu verbessern. „Wir haben ja einen Ozean von Stickstoff um uns, denn die Luft besteht zu 78 Prozent daraus. Für die Pflanzen allerdings ist der bisher nicht nutzbar.“

Um dieses System, das bei den Hülsenfrüchten funktioniert, auch in Getreide einzubringen, seien auch weitere Szenarien denkbar. Zum einen könne man versuchen, die Wildreispflanzen, die eine Symbiose mit den Bakterien ausbilden, mit Kulturpflanzen zu kreuzen. Das sei aber ein Unterfangen, bei dem der Zufall regiert. Darum bevorzugt Reinhold den Ansatz, die Gene, die in den passenden Wildreissorten für diese Symbiose zuständig sind, zu isolieren und in die Kulturpflanzen einzubringen. Möglich sei auch, das genetische System für die Knöllchenbildung aus den Hülsenfrüchten oder sogar die entsprechenden Enzyme der Bakterien in das Genmaterial der Getreide zu überführen. Das bedeute allerdings einen erheblichen Eingriff in das genetische Material der Pflanzen, „und da glaube ich nicht, dass die Verbraucher das akzeptieren würden“, so Reinhold.

Solchen transgenen Pflanzen steht sie selbst sehr positiv gegenüber – „so lange man darauf achtet, dass keine schädlichen Wirkungen entstehen wie die Produktion von Allergenen.“ Der Vorteil dieser Methoden liege nämlich darin, dass in die Pflanzen nicht – wie bei der Kreuzung – eine Vielzahl unbekannter oder gar unerwünschter Gene eingebracht wird. Deshalb hofft sie, dass der Ruf transgener Pflanzen über einen verantwortungsvollen Umgang seitens der Forscher und eine wohlinformierte Debatte „ohne Glaubenskriege fernab wissenschaftlicher Fakten“ verbessert wird. (Dieser Text wurde veröffentlicht am 30.05.2012).

Autorin: Anke Wilde

„Forschung funktioniert selten wie am Schnürchen, es gibt lange Durststrecken und selten Höhen“, erzählt die Wissenschaftlerin. Die Kunst an der Forschung sei es, durchzuhalten, neue Ansätze zu versuchen und nicht so schnell aufzugeben. Diese Einstellung hat die 63-jährige Mikrobiologin weit gebracht – zu den Stationen ihrer Forscherkarriere gehören Berlin, das Cold Spring Harbor Laboratory auf Long Island, und die LMU München. Die Nationale Akademie der Wissenschaften Leopoldina würdigte ihre herausragenden Arbeiten auf dem Gebiet der Phagen- und Pilzgenetik im September 2011 mit der Mendel-Medaille. Mit dieser Auszeichung ehrt die Leopoldina Pionierleistungen auf dem Gebiet der allgemeinen und molekularen Biologie.

Mit Phagen zu faszinierenden Erkenntnissen

Mit Phagen – also Viren, die Bakterien befallen – bekam Regine Kahmann es erstmals Ende der 1960er Jahre während ihres Biologie-Studiums an der Universität Göttingen zu tun. „Phagen sind ein tolles genetisches Modell, hier hatten wir innerhalb weniger Tage Erkenntnisse. Im Vergleich zur Forschung mit Maus oder Pflanzen ist das wahnsinnig schnell“, betont die Forscherin. Die Arbeiten mit den Bakterien-Viren sollten sie noch viele weitere Jahre begleiten. So konnte Kahmann bei Studien zur Rekombination des Phagen Mu nachweisen, dass die Entscheidung des Phagen zum Befall eines mikrobiellen Wirts von dem Gin-Protein des Virus und dem FIS-Protein des Wirtsbakteriums abhängig ist. Vor 15 Jahren konzentrierte sich Kahmann auf ein neues Studienobjekt: Bis heute widmet sie sich ausgiebig der Interaktion von pflanzenpathogenen Pilzen mit ihrem Wirt – und das ebenfalls erfolgsgekrönt.

Dem Maisbrand-Pilz auf der Spur

Es geht dabei insbesondere um den Pilz Ustilago maydis, ein Schädling, der bei Maispflanzen unschöne, schwarze, tumorartige Gebilde auf den oberirdischen Teilen auslöst. Die Schäden sind für Landwirte nicht gravierend, Jubel ruft der Befall hierzulande jedenfalls nicht hervor. „Ganz anders in Mexiko“, erzählt Kahmann, „hier sind die schwarzen Maistumoren eine Delikatesse. Die Mexikaner infizieren den Mais absichtlich und verkaufen die Geschwüre zu hohen Preisen.“ Die Mikrobiologin Kahmann interessiert sich indes weniger für die kulinarischen Vorzüge des Pilzes. Sie erkundet mit ihrem Team, wie der Krankheitserreger es schafft, im Inneren einer Maispflanze zu wachsen. Der Pilz wird interessanterweise nur pathogen, wenn er sich fortpflanzt. Die Leiterin der 50 Mitarbeiter zählenden Abteilung am Max-Planck-Insitut für terrestrische Mikrobiologie in Marburg konnte zeigen, wie es dem Schädling gelingt, die Maispflanze zu infizieren. „Rückblickend kann ich sagen, dass unsere Untersuchungen an Ustilago maydis dazu geführt haben, dass wir die dort ablaufenden genetischen Prozesse so langsam verstehen“, so die Wissenschaftlerin. Sie ist wirkt auch im Senat der Deutschen Forschungsgemeinschaft (DFG) und im Senat der Max-Planck Gesellschaft.

Das Team um Kahmann hat bisher an die 200 neuartige Proteine gefunden, die die Interaktion von Pilz und Pflanze steuern. Im vergangenen Jahr publizierte Kahmann-Labor einen wichtigen Fachartikel in Nature (2011, Bd. 478, 395-398). Höchst interessant ist, dass diese Proteine keine Ähnlichkeit zu bisher bekannten Eiweißen haben. „Wenn ich es noch schaffe, die Funktion von zehn dieser Proteine aufzuklären und zu verstehen, dann bin ich sehr zufrieden. Ich bin mir heute schon sicher, dass wir bei jedem der zehn Moleküle Überraschungen erleben werden“, so die Genetikerin. „Zum Glück habe ich aber tolle, jungen Mitarbeiter, die eine wissenschaftliche Karriere anstreben und die werden diese Dinge weiter verfolgen.“

Grundlagenforschung wird für die Industrie interessant

In Zukunft könnten die Ergebnisse der Marburger Pilzforscher auch für die Industrie interessant werden, doch momentan steht das für Kahmann nicht im Vordergrund. „Die neuartigen Proteine sind natürlich hochinteressant, es sind langfristig fantastische Zielmoleküle für den Pflanzenschutz“, erklärt Kahmann. Aber für eine industrielle Anwendung ist es momentan noch zu früh, denn erst müssen die Forscher ihre Hausaufgaben machen und die molekularen Angriffsorte dieser Moleküle in der Pflanze herausfinden und genau charakterisieren. (Der Text wurde veröffentlicht am 21.03.2012).

Autorin: Andrea van Bergen