Chemistry

Intestinal bacteria produce mussel adhesive

Mussels produce and use one of the strongest biobased adhesives known to date, because they live in the tidal and shelf areas of the oceans and must therefore withstand strong currents and salt water. Exactly such a strong and biobased super glue would also be very useful in regenerative medicine: biocompatible adhesives could be used to treat superficial wounds, and could replace plates and screws, which are commonly used to treat bone fractures.

Bacteria enable beetles to digest leaves

Many animals are herbivores. However, the plant cell wall contains cellulose and pectin – both of which are very difficult to digest and require specific enzymes for their break down. Throughout evolution many symbioses between microbes and herbivores have emerged in order to derive the most use out of their vegetable nourishment. The thistle tortoise beetles are an extraordinary example for such a symbiosis.

How bacteria and algae talk

Microbes often live in complex biosystems. Their co-habitation is regulated by a number of chemical signals. Researchers from Jena now identified the mechanism that causes Chlamydomonas reinhardtii, roughly ten micrometer in size, to lose their flagella within minutes of coming close to Pseudomonas protegens bacteria, which are merely two micrometers in size.

Nanotechnology allows for larger 3D structures

Using the "DNA-origami-technique" researchers can fold single DNA strands into a three-dimensional double-stranded structure. Biophysicist Hendrik Dietz, Professor of Biomolecular Nanotechnology at TU Munich, is an expert of this field and has now developed a new way to make the tiny DNA origami structures larger by transfering viral construction principles to DNA origami technology. This enables him and his team to design and build much larger structures than before – now on the scale of viruses and cell organelles.

Transforming plants into bio-factories

Plants produce a number of metabolites with diverse functions. Many of these metabolites are not only useful to the plant itself, but also have positive effects in humans and animals. However, the extraction of these compounds in sufficient quantities from the naturally producing resources is often laborious and costly. While some metabolites can be produced in bacteria, so far none can be manufactured in plants themselves.

3D skin models to reduce allergens

The skin is the largest organ of the human body and fulfils a number of vital functions. However, the skin is also under constant “attack” – by the sun, water or allergens in clothing and cosmetics. In order to minimise or even exclude allergens in such products, they are tested on skin models in cell culture. For a better understanding of skin physiology the Mannheim University of Applied Sciences (MUAS) and BRAIN AG are developing a new three-dimensional skin model with the aim to provide new insights for health care and cosmetic applications.