Aktuelle Veranstaltungen

Was passiert, wenn immer mehr Land für den Anbau von Energiepflanzen genutzt wird? Wie verändert ein höherer Anteil an Bioenergie die Energiewirtschaft? Was kann getan werden, um unsere begrenzten Ressourcen Energie, Land, Wasser und Nährstoffe effizienter zu nutzen? Statt Tarotkarten und Pendel benutzt das Team um Christine Rösch seriösere, aber nicht weniger spannende Methoden, um Dinge vorherzusagen. Die ITAS-Wissenschaftler entwerfen Zukunftsbilder und untersuchen die Effekte neuer Technologien und Entwicklungen in diesen Szenarien. So kann ausgelotet werden, wie wissenschaftliche Fortschritte auf Umwelt und Gesellschaft wirken. 

Für Christine Rösch ist das ein Traumjob: Die Arbeit am ITAS ermöglicht der Biologin zusammen mit Physikern, Geologen, Sozialwissenschaftlern und Ingenieuren zu arbeiten. „Wer disziplinär arbeitet, befasst sich oft nur mit einem Mikrokosmos“, sagt Christine Rösch. „Wir haben die Möglichkeit, die großen Zusammenhänge in den Blick zu nehmen. Am ITAS werden zudem aktuelle, gesellschaftlich relevante Themen bearbeitet. Durch den Themenwechsel ist die Arbeit sehr abwechslungsreich.“

Neue Energiehoffnung: Biomasse aus Algen

Ein Dauerbrenner unter den Themen ist die Energiegewinnung auf der Basis nachwachsender Rohstoffe. Derzeit ist Christine Rösch Leiterin des EU-Projektes „EnAlgae“ („Energetic Algae“), in dem ein internationales Team vier Jahre lang daran arbeitet, die Entwicklung einer Biomasseproduktion aus Algen voranzutreiben. Die grünen Winzlinge sind für die Energiegewinnung besonders geeignet: Sie können fünfmal so viel Sonnenlicht in chemische Energie umwandeln wie Raps und Mais und dabei große Mengen an CO2–Emissionen aus Energie- und Industrieanlagen aufnehmen.  Auch aus Nachhaltigkeitssicht haben Algen enorme Vorteile, sagt Rösch, denn sie benötigten keinen landwirtschaftlich nutzbaren Boden, um zu wachsen. „Sie gedeihen sogar in Salz- und Abwasser und lassen sich in technischen Systemen kultivieren“, erklärt die Forscherin, „deshalb konkurrieren sie nicht mit der Nahrungsmittelproduktion.“ Die Algenforschung steht noch relativ am Anfang: Für die Umsetzung der Energiegewinnung aus Algen bedarf es großflächiger Kulturanlagen. Deren Voraussetzungen und Folgen sowie Akzeptanzfähigkeit werden am ITAS analysiert.

Karlsruhe, Berlin, Stuttgart – und zurück

Für Pflanzen hat sich Christine Rösch schon früh interessiert, ihre Eltern führten einen landwirtschaftlichen Betrieb. Nach ihrem Abitur in Ulm wollte sie eigentlich Tiermedizin studieren, doch der hohe Numerus Clausus hatte den Traum platzen lassen – zum Glück. Sonst hätte sie vielleicht nie ihr Interesse für die Energiegewinnung aus Grünpflanzen entdeckt. Nach dem Studium der Agrarbiologie an der Universität Hohenheim schloss Christine Rösch ihre Diplomarbeit an der University of Georgia ab und kam danach als wissenschaftliche Mitarbeiterin ans ITAS. Zehn Jahre später promovierte sie an ihrer Heimatuniversität zum Dr. sc. Agr. mit einer Arbeit zur Verwertung von Bio- und Grünabfällen. Sie arbeitete mehrere Jahre im Büro für Technikfolgenabschätzung beim Deutschen Bundestag und am Institut für Energiewirtschaft und Rationelle Energieanwendung an der Universität Stuttgart. 2001 hat die Aussicht auf spannende Arbeit in einem  bunt gemischten Team Christine Rösch wieder ans ITAS gelockt. Heute wohnt die zweifache Mutter in der Nähe von Karlsruhe, tanzt in ihrer Freizeit Zumba und spielt leidenschaftlich gerne Tennis.

Gemüseanbau auf Wolkenkratzern

In Zukunft möchte sich die Wissenschaftlerin gerne mit dem Thema „Skyfarming“ befassen, also mit dem Anbau von Gemüse auf Großstadtdächern. „Die Weltbevölkerung wächst, vor allem in den Großstädten, und pro Kopf steht immer weniger Ackerfläche zur Verfügung. Deshalb brauchen wir neue Ideen für eine umweltverträgliche und sichere Nahrungsmittelversorgung“, sagt Christine Rösch. Aqua-Kulturen könnten den Ackerboden teilweise ersetzen: Reis zum Beispiel müsse nur regelmäßig mit nährstoffreichem Abwasser besprüht werden, aber auch Tomaten könnten in Gebäuden wachsen. Wenn Gemüse direkt in der Stadt angebaut wird, fallen außerdem Lagerungs- und Transportkosten weg und es würden weniger Lebensmittelabfälle erzeugt. Eine futuristische Idee, die schon mancherorts ausprobiert wird. Erzählt Christine Rösch ihrer landwirtschaftlich versierten Eltern und Geschwistern vom Skyfarming, schütteln die nur lachend den Kopf. „Aber das ist ja gerade das Schöne an meinem Beruf“, sagt die Wissenschaftlerin, die sich selbst eher als Zukunftsforscherin sieht. „Ich kann mir verrückte Dinge anschauen und mutig sein in meinen Überlegungen.“  (Dieser Text wurde veröffentlicht am 29.02.2012).

Autorin: Fabienne Hurst

Die Potsdamer Biologin ist von der praktischen Bedeutung ihrer Arbeit überzeugt. „Die Sommer werden immer heißer und trockener, da ist es kein Wunder, dass die Stressresistenz in der Züchtungsforschung eine immer größere Rolle spielt.“ Das sieht die Alexander von Humboldt-Stiftung ähnlich und fördert deshalb die Forschung der Molekularbiologin an der Universität Potsdam für die nächsten fünf Jahre mit dem Sofja Kovalevskaja-Preis. Mit dem Preisgeld von rund 1,5 Millionen Euro finanziert Bäurle ihre neue Arbeitsgruppe. Mit ihren vier Mitarbeitern experimentiert sie an der Ackerschmalwand (Arabidopsis thaliana). Der krautige Kreuzblütler ist das „Haustier der Pflanzengenetiker“, erklärt Bäurle. Die Pflanze ist zwar landwirtschaftlich unbedeutend, hat sich aber über Jahrzehnte als Modellorganismus in der Genetik etabliert. Die Forscherin betont: „Unsere langfristige Perspektive sind ganz klar stressresistente Nutzpflanzen.“

Pflanze erinnert sich an Kälteperiode

Viele Zuhörer würden die Stirn runzeln wenn sie vom Gedächtnis der Pflanzen erzähle, sagt Bäurle. „Doch auch ohne Nervensystem haben Pflanzen einen Mechanismus, der ähnlich wie ein Gedächtnis funktioniert, über den man aber eben noch sehr wenig weiß.“ Für ihren Postdoc ging Bäurle an das John Innes Centre im englischen Norwich. Ihr Forschungsschwerpunkt dort: die Vernalisation. Viele ein- und zweijährige Pflanzenarten blühen erst, nachdem sie eine andauernde Periode mit niedrigen Temperaturen durchlebt haben. Das verhindert, dass die Pflanzen bereits vor Wintereinbruch zu blühen beginnen. „Das ist ein klassisches Beispiel dafür, dass eine Pflanze eine Art Gedächtnis hat, denn das Ende des Winters und der Beginn der Blühphase können Monate auseinander liegen“, so Bäurle.

Mit ihrem Team verfolgt sie nun gleich mehrere Ansätze, um herauszufinden, warum bestimmte Pflanzen ein besseres Gedächtnis haben als andere und sich so besser an wiederkehrenden Umweltstress anpassen können. Ihre Hypothese ist, dass epigenetische Prozesse eine bedeutende Rolle spielen. Also Prozesse, die die Expression von Genen über Generationen hinweg verändern können, ohne die DNA-Sequenz zu modifizieren. „Bei unserem Modellorganismus sind wir in der glücklichen Lage, dass es für jedes bekannte Gen eine Mutante gibt, die man praktisch aus der Schublade ziehen kann“, sagt Bäurle. Derzeit sucht sie nach Mutanten, die schneller vergessen, dass sie Hitzestress ausgesetzt waren. So hofft sie, Regulatoren des Gedächtnisses zu finden, deren Funktion sie dann auf molekularer Ebene weiter erforschen wird. Gleichzeitig sucht sie mit ihrem Team aber auch nach bisher unbekannten Genen, die beim Gedächtnis der Pflanzen eine Rolle spielen könnten.

Vom britischen Norwich nach Potsdam

So flexibel Pflanzen auf Umweltbedingungen reagieren, so flexibel zeigt sich auch Isabel Bäurle in ihrer Forschung. Alte Annahmen werden ohne Reue über Bord geworfen, wenn sie sich als nicht mehr adäquat erweisen. Auch ihr Werdegang als Forscherin zeugt von dieser Flexibilität. Ihr Studium begann sie mit Deutsch und Französisch, wandte sich dann aber denjenigen Fächern zu, für die sie sich schon in der Schule am meisten begeistern konnte: Biologie und Chemie. Später war sie ein Jahr als Erasmus-Studentin in Italien. „Mich reizte einfach die Möglichkeit, eine neue Sprache zu lernen“, erinnert sie sich. Als sie allerdings merkte, dass sie dort wissenschaftlich unterfordert war, suchte sie sich kurzerhand einen Platz zur Mitarbeit in einem Labor. Ein kleine Kurskorrektur, die gleichzeitig entscheidend war: „Ich denke, damals bei der Laborarbeit habe ich den Reiz am Forschen entdeckt.“ Ihre Doktorarbeit führte sie in der Welt der Pflanzengenetik, mit Stationen in Tübingen und Freiburg.

Als Kovalevskaja-Preisträgerin 2010 ergab sich nun für Isabel Bäurle die Möglichkeit, von Großbritannien aus mit ihrem Forschungsprojekt an einer deutschen Forschungseinrichtung ihrer Wahl anzudocken. Potsdam ist für sie eine junge, dynamische Uni und auch durch das  nahe Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam-Golm besonders attraktiv. „Aber ich will nicht verschweigen, dass es auch einen privaten Grund für die Ortswahl gab“, sagt sie und lacht. Ihr Mann  hat Anfang dieses Jahres eine Professur für Genetik an der Universität Potsdam angenommen. Gemeinsam mit ihrer Tochter ist Bäurle vor wenigen Monaten nach Potsdam gezogen. Richtungswechsel stehen in dieser Hinsicht jetzt erst einmal nicht an. (Text veröffentlicht am 30.11.2010)

Autorin des Textes: Ute Zauft

„Die Entschlüsselung des Genoms von Nutzpflanzen wie Gerste und Weizen ist eine der großen Herausforderungen für die Bioinformatiker,“ erklärt Klaus Mayer, Gruppenleiter der 12-köpfigen Arbeitsgruppe „Pflanzliche Genomforschung“ am Institut für Bioinformatik und Systembiologie am Helmholtz-Zentrum München. „Das Genom des Weizens ist mit seinen 15 Gigabasen – das entspricht 15 Milliarden DNA-Bausteinen - ungefähr fünf mal so groß wie das menschliche Genom“, so der Forscher. Auch die Sequenz der Gerste lässt sich nicht lumpen: Immerhin hat es 1,8 mal mehr an Inhalt zu bieten als das menschliche Pendant. Doch Größe ist nicht alles, die Nutzpflanzen protzen mit großen Genomen, in denen sich aber nicht viel mehr Gene befinden. „Über 90% des Genoms sind angefüllt mit ähnlichen, sich wiederholenden Elementen,“ erklärt Mayer. Diese Überreste der Evolution machen das Zusammensetzen der sequenzierten Einzelteile enorm schwierig, denn die Forscher haben wenig Anhaltspunkte, die Abschnitte in der richtigen Reihenfolge aneinander zu fügen oder dem richtigen Chromosom zuzuordnen.

Die Kunst, die richtige Reihenfolge zu finden

Die Entschlüsselung des 280 Megabasen großen Genoms von Brachypodium distachyon, der Modellpflanze für Getreide, ist den Münchnern in Kooperation mit internationalen Forschungseinrichtungen erfolgreich gelungen und stellt die Grundlage zur Erforschung von weiteren Nutzpflanzen dar. „Die Sequenzierarbeit dafür wurde vom kalifornischen Joint Genome Institute durchgeführt und dauerte dank moderner Sequenziermaschinen lediglich zwei Wochen. Das Zusammenfügen des Sequenz-Puzzles am Computer und die Analyse von Genen und der Vergleich mit anderen Genomen nahm viel mehr Zeit in Anspruch,“ erinnert sich Mayer. Die Wissenschaftler können nun aus den Sequenzen folgern, dass mehrere zehntausend genetische Beziehungen zwischen Brachypodium, Reis und Weizen existieren.

Diese wissenschaftliche Leistung brachte eine Publikation im hochgeschätzten Wissenschaftsmagazin Nature (11. Februar 2009, Bd. 463, S. 763-767) ein. Die Sequenzen machen die Wissenschaftler frei zugänglich – eine Information, die für die Sequenzierung und Analyse von Gerste und Weizen wesentlich ist und von der mittelfristig auch Züchter profitieren. „Diese können beispielsweise gezielter Pflanzen züchten, die dem Klimawandel trotzen, resistenter gegen Krankheiten oder auf trockenen Böden wachsen“, sagt der 46-jährige Wissenschaftler, der über Umwege zur Forschung gelangte. Nach einer Ausbildung zum Chemielaborant machte er sein Abitur auf dem zweiten Bildungsweg und studierte anschließend Biologie in München. „Meinen einzigen 'Auslandsaufenthalt' hatte ich während meiner Promotion. Den verbrachte ich als Bayer im schwäbischen Tübingen,“ erzählt der Biologe mit einem Schmunzeln. Den Neckar verließ er vor zwölf Jahren wieder und ist seitdem am Institut für Bioinformatik und Systembiologie, zuerst am Max-Planck Institut für Biochemie und dann am Helmholtz-Zentrum München.

Weitere Sequenzierungsprojekte von Nutzpflanzen und Tieren

Die Computer in Mayers Arbeitsgruppe werden selten abgeschaltet. In diversen vom Bundesforschungsministerium geförderten Projekten sind sie derzeit im Einsatz. So laufen die Analysen von Hühner- und Rindergenomen, die im Rahmen von SynBreed unterstützt werden. Darüber hinaus ist Mayer an der Sequenzierung des Gerstengenoms unter dem Dach der BMBF-Initiative "Genomanalyse im biologischen System Pflanze" (GABI) beteiligt. „Dieses Projekt ist bahnbrechend. Zusammen mit unseren Kollaborationspartnern haben wir einen Weg gefunden, um mit cleverer bioinformatischer Analyse einen Großteil der Gerstengene im Genom anzuordnen“, sagt der Familienvater und Bergliebhaber Mayer.

Mit einer gehörigen Portion Ausdauer kommt Mayer seinem Ziel, möglichst viele Genome zu entziffern, Schritt für Schritt näher: Seine Vision ist es, eine synergetische Plattform für die verschiedensten Arten und Varietäten zu etablieren die erlauben, die molekularen Unterschiede zwischen verschiedenen Pflanzen und Tieren zu untersuchen. (Dieser Text wurde am 27.04.2010 veröffentlicht).

Autorin des Textes: Andrea van Bergen

Die fünfte Ausgabe der „Conference on CO2 as Feedstock for Fuels, Chemistry and Polymers” am 6. und 7. Dezember hatte rund 180 Experten aus 20 Ländern angelockt. Das Nova-Institut hatte die Veranstaltung organisiert. Die Teilnehmer einte die Sicht, aus dem Zuviel an Kohlendioxid in der Atmosphäre eine Tugend zu machen - und das Gas als Rohstoff oder Baustein für innovative Produkte in der Chemie- und Energiewirtschaft zu nutzen.

Die Speicherung von Energie aus erneuerbaren Quellen ist entscheidend für eine insgesamt nachhaltige Stromversorgung mit niedrigem CO2-Ausstoß. Überschüssige Energie aus Windkraft und Co. könnte dann für Zeiten aufgespart werden, in denen die Produktion die Nachfrage nicht decken kann. Bedingt durch die Schwankungen bei Wind und Sonneneinstrahlung müssen bisher noch konventionelle Kraftwerke für Stabilität im Stromnetz sorgen.

Fieberhaft wird an der effizienten Umwandlung von elektrischer Energie in eine geeignete Speicher-Form geforscht, die möglichst selbst nicht auf fossilen Brennstoffen beruht. Vielversprechend sind sogenannte Power-to-liquid und Power-to-gas-Technologien, bei denen erneuerbare Quellen genutzt werden, um elektrische Energie in Form von Biokraftstoff oder Biogas zu speichern. Dabei wird mittels Elektrolyse Wasserstoff erzeugt, welcher zusammen mit CO2 über eine chemische oder biologische Katalyse in Kohlenwasserstoffe umgewandelt wird. Der große Vorteil solcher Technologien wäre, dass man nicht nur einen Speicher für Energie aus Sonne und Wind hätte, sondern gleichzeitig klimaschädliches CO2 binden würde. Die Ansätze unterscheiden sich hinsichtlich der angewandten Prozesse und der dabei entstehenden Produkte.

Abgase in Biomethan umgewandelt

Neben verschiedenen chemischen Verfahren zur Bindung und Umwandlung von CO2 sind vor allem auch biologische Katalysatoren groß im Kommen. Die Electrochaea GmbH aus dem bayerischen Planegg etwa nutzt Archaeen, um Kraftwerkabgase gespeist von regenerativer Energie in Biomethan umzuwandeln. Die urtümlichen Mikroorganismen sind nämlich nicht nur unempfindlich gegen die in den Abgasen enthaltenen Schwefelgase, sie brauchen diese sogar zum Überleben. Mit Wasserstoff als Beilage produzieren die Mikroben Methan, als Nebenprodukte entstehen Wasser und Wärme. „Ein großer Vorteil dieses biologischen Verfahrens ist die Resistenz der Archaeen gegen Verunreinigungen in den zugeführten Abgasen“, sagte Doris Hafenbradl, Chief Technology Officer bei Electrochaea. „Diese müssen für vergleichbare chemische Verfahren aufwendig herausgefiltert werden, was einen großen Kostenfaktor darstellt.“ Electrochaea erprobt seinen Biokatalysator in einer fortgeschrittenen Pilotanlage im Rahmen des BioCatProject in Dänemark.

CO2 als Rohstoff für hochwertige Biotechnologie

Aber Sprit und Biogas sind nicht einzigen möglichen Produkte einer Rückgewinnung von CO2 aus der Atmosphäre. Verschiedene Startups nutzen speziell entwickelte Mikroorganismen, um aus CO2 hochwertige Plattform-Chemikalien und Polymere herzustellen. Phytonix aus den USA nutzt zum Beispiel Cyanobakterien, die aus CO2 den für die Chemieindustrie wichtigen Stoff Butanol herstellen. Damit wurde ein auf der Verbrennung fossiler Brennstoffe basierender Prozess durch eine innovative Methode ersetzt, die sogar CO2 bindet, also eine positive Kohlenstoffbilanz hat. Auch hier wird es 2017 bereits eine Pilotanlage geben.

Die Firma Syngip aus den Niederlanden hat ein Bakterium entwickelt, um damit Isobuten herzustellen, einen Ausgangsstoff für Kraftstoffe und Chemikalien. Weitere innovative Startups und Spin-offs wollen aus CO2 und anderen „Abfällen“ wie Biomüll mithilfe von Mikroorganismen Biokunststoffe und organische Säuren produzieren. Die vielen unterschiedlichen Ansätze scheinen auf eine Zukunft hinzudeuten, in der CO2 nicht mehr nur ein Garant für Luftverschmutzung und Klimaerwärmung sein könnte, sondern auch ein begehrter Ausgangsstoff für verschiedenste hochwertige Produkte. Ob diese Innovationen eine breite Anwendung finden wird sich in den nächsten Jahren abzeichnen. Die verschiedenen Netzwerke, welche sich die politische und wirtschaftliche Förderung der neuen CO2-Technologien zur Aufgabe gemacht haben, halten vor allem private Investitionen und die richtigen politischen Rahmenbedingungen für entscheidend.

Photosynthese am Reißbrett

Viele Forscher halten Verfahren, die sich an der natürlichen Photosynthese orientieren, für den Weg der Zukunft. Pflanzen und Bakterien tun seit Jahrmillionen genau das, was der Mensch nun technisch auf seinem Weg zur Nachhaltigkeit nachmachen will: Mit regenerativer Energie, nämlich Sonne, CO2 in energiereiche Kohlenwasserstoffe umwandeln. Allerdings ist die Effizienz der natürlichen Photosynthese sehr gering. Wissenschaftler forschen deshalb an einer künstlichen Photosynthese nach natürlichem Vorbild, jedoch mit höherer Effizienz. Dabei handelt es sich noch um Grundlagenforschung, eine Anwendung liegt noch in der Zukunft. Auf der CO2-Konferenz des Nova-Instituts stellte Stenbjörn Styring von der Universität in Uppsala, Schweden die Arbeit seiner Gruppe vor. Diese beschäftigt sich mit der Photosynthese in Cyanobakterien. Erst kürzlich gelang es Forschern am Max-Planck-Institut für Terrestrische Mikrobiologie und dem LOEWE-Center für Synthetische Biologie in Marburg, 17 Enzyme aus neun verschiedenen Organismen zu einem völlig neuartigen Stoffwechselweg zur CO2-Fixierung zusammenzubauen. Über ihre Konstruktion berichten sie im Fachjournal „Science“.

Klar wurde in Köln, dass die effiziente Rückgewinnung von CO2 aus der Atmosphäre eine zukunftsträchtige Alternative zur Abhängigkeit von endlichen, fossilen Ressourcen ist und gleichzeitig eine Maßnahme für den Klimaschutz darstellt. Da es dabei um die Verarbeitung zu wertvollen Kraft- und Werkstoffen geht, könnte die innovative CO2-Nutzung der Chemie- und Energiebranche neuen Aufschwung und breite Akzeptanz bescheren.

Zusammen mit indischen Projektpartnern wollen Forscher der Universität Münster ein besonders umweltfreundliches und preisgünstiges Pflanzenschutzmittel herstellen. Dafür nutzen sie Chitosan, ein aus Krabbenschalen gewonnener Naturstoff. Das fertige Produkt soll indischen Teefarmern ebenso zugute kommen wie deutschen Kartoffelbauern. Das Bundesministerium für Bildung und Forschung fördert das deutsch-indische Vorhaben in den kommenden vier Jahren mit mehr als 1,2 Millionen Euro.

Auf den ersten Blick haben Teepflanze und Kartoffelknolle nicht viel miteinander gemein, doch das täuscht. Denn beide Pflanzen bedroht der gleiche Feind: die sogenannten Eipilze. Bei ihnen handelt es sich nicht etwa um echte Pilze, die Einzeller sind viel näher mit den Braunalgen und Kieselalgen verwandt. Zu den Eipilzen gehören einige besonders gefürchtete Erreger von Pflanzenkrankheiten. So löst zum Beispiel Phytophthora infestans bei der Kartoffel die Kraut- und Knollenfäule aus. Sie gilt als Auslöser der großen Hungersnot in Irland in der Mitte des 19. Jahrhunderts. Unzählige Irländer suchten damals ihr Heil in der Auswanderung nach Amerika, abertausende verhungerten. Auch wenn in Europa die Erreger inzwischen dank chemischer Pflanzenschutzmittel zurückgedrängt wurden, ist die Situation in weniger entwickelten Ländern teilweise noch dramatisch. 

Bisherige Bekämpfungsmethoden nicht zuverlässig

Das erfuhr auch der Biotechnologe Bruno Moeschbacher, als er 2007 mehrere Gewürz-, Gummi-, Tee- und Kaffee-Plantagen im südindischen Kerala besuchte. Der Professor am Institut für Biologie und Biotechnologie der Pflanzen an der Universität Münster erinnert sich: „Immer wieder zeigte ein indischer Forscherkollege mir Pflanzen, die durch sogenannte Eipilze krank geworden waren.“ Er erfuhr auch: Den meist armen Landwirten dort stehen nur kupferbasierte Präparate zur Behandlung der Pflanzen zur Verfügung, doch diese sind nach Einschätzung der Wissenschaftlernur bedingt wirksam. Indische Forscher begannen daraufhin mit der Suche nach biologischen Bekämpfungsmaßnahmen. Wie die Kollegen den Münsteraner Wissenschaftlern mitteilten, erwies sich die Strategie, mikroskopische Bodenpilze zum Pflanzenschutz einzusetzen, jedoch ebenfalls als wenig zuverlässig. Und auch als sie versuchten, die biologischen Präparate mit den Kupferfungiziden zu kombinieren, mussten die indischen Kollegen eine herbe Enttäuschung hinnehmen: Das Kupfer bekämpfte nicht nur wie erwartet die Schadpilze, sondern schädigte auch jene Bodenpilze, die Teil der biologischen Bekämpfungsmittel waren.

“Only when we have properly understood our oceans, can we begin to use them sustainably and protect them better,” said Federal Research Minister Johanna Wanka at the official opening of the Year of Science in Berlin in early June. She also used the opportunity to present the federal government’s new programme on marine research (MARE:N), which wants to invest more than four billion euros in the future of the oceans over the next ten years.

The new marine research programme MARE:N (for more information in German click here) bundles all measures of the Federal research, economic, agricultural, transport and environment ministries under one roof. “We now have to initiate a turnaround towards sustainable use of the seas because of climate change, over-fishing and littering is threatening the largest habitat on the planet,” said Wanka at the marine research centre GEOMAR in Bremen. Over the next ten years, the BMBF alone intends to provide more than €450 million for research for the funding of relevant projects. Together with the funding from research centres and the renewal of the German research fleet, more than four billion euros will be invested in the future of the oceans over the next decade.

€28 million for the fight against plastic litter

In addition to the research programme MARE:N, from June, the BMBF will also fund projects to scientifically examine the journey of plastic from production through to consumption and its transportation from land to the rivers and to the oceans – where it finally ends up. However, even experts do not yet have an accurate picture of the whole problem. This, in turn, is a crucial prerequisite to finding effective solutions. German and Belgian researchers were able to show recently that up to eight million tonnes of plastic litter are driven out into the sea and parts of it has already reached the Arctic.

The BMBF has already provided a total of €28 million over the next three years to improve the knowledge base on plastic waste in the oceans. The focuses of the projects run by the research programme “Plastic in the Environment” are consumer research, the role of the economy as well as material research.

Together with research on seas and inland waters, approaches are required in which research with representatives from industry, civil society and administration cooperate that the results can be effectively implemented. The goal is to gain an overall picture of how plastic is produced and used, traded and finally, disposed of.

German researchers leading in EU consortia

Thus, the new research programme complements efforts at European level. In 2015, an EU research funded programme “Microplastic in marine systems” was started as part of the JPI Oceans Initiative. In the autumn, a total of four research consortia received a premium for the funding, including two under German leadership.

The Alfred Wegener Institute and the Helmholtz Centre for Polar and Marine Research is collaborating with the consortium BASEMAN in order to define standards for micro-plastic analysis in European waters. The Helmholtz Centre for Environmental Research coordinates the project WEATHER-MIC, which will deal with the changes in transport, the degradation and the toxicity of micro-plastics in the marine environment. 

Germany is the pioneer in the fight against micro-plastics On the German side, the Alfred Wegener Institute at the Helmholtz Centre for Polar and Marine Research will lead the consortium “Baseman” which is working to uniform standards for micro-plastic analysis and measuring methods (for information, click here).

© biotechnologie.de/sw

The total value of its R&D pipeline is now estimated to be in the lower single-digit billion-euro range – a figure that is expected to continue growing over the next few years. Already established as world leader in the biotechnological production of amino acids for the animal feed industry, Evonik has ambitious goals – to be the best in innovation.

"Our innovation campaign is bearing fruit,” said Klaus Engel, Chairman of the Executive Board of Evonik Industries at a press conference in Essen. “The constant flow of new products, applications, and business models is a major driver of profitable growth at Evonik. Innovations are to make an even larger contribution to sales and profit going forward." In the medium term, Evonik aims for products and applications developed in the last five-year to account for over 16 percent of sales. Currently, they make up around 10 percent of sales.

Growth areas in sight

Evonik plans to focus on concepts from biotechnology and bioeconomy. According to Evonik Chief Innovation Officer Ulrich Küsthardt, growth areas such as sustainable nutrition, healthcare solutions as well as cosmetic solutions should net the company more than €1 billion euros in additional sales. ´The projects processed in these areas have very different focuses. The project centre “Medical Devices” is working on biodegradable composite materials, which in the future could replace metal implants for bone fractures. They consist of polymers that the body will degrade naturally and substances, which occur naturally in the bone. While implants made of metal usually remain in the body or have to be removed in additional surgical procedures, Evonik’s new composite materials are absorbed by the body gradually once the bone healing process has taken place.

World market leaders in innovation

The Essen-based chemical industrial group has made a name for itself with the biotechnological production of amino acids for the animal feed industry and has become a world leader in the field. In 2015, more than half of the fish, crustaceans and shellfish consumed globally are farmed in aquacultures. They are fed fishmeal as a protein sources which is a significant cost to farmers. Scientists are now supplementing the feed with amino acids to reduce the proportion of fishmeal in feeds. Because crustaceans and shellfish have different metabolisms to fish, Evonik has developed a product especially for them. The new fishmeal-free feed can be better metabolised by the organisms than the pellet alternatives they previously received.

Crustaceans and shellfish go veggie

Evonik’s new dipeptide of Methioninmolekülen is insoluble in water and is therefore not as quickly leached from the lining. This increases the efficiency and sustainability of shrimp farming. The product has already been registered as a feed additive in many countries, with more to follow says Evonik.

"With this new product we're extending our range of feed amino acids for animal nutrition to include another speciality with high value for our customers,” says Dr Reiner Beste, chairman of the board of management of Evonik Nutrition & Care GmbH.

The first production plant for the new product has already been built in Antwerp and now the company is starting the production phase.“We want to be the most innovative company in the world,” Küsthardt said emphasising the company’s ambitions.

In an appeal published on 30 June, the scientists also raise serious accusations against the environmental organisation Greenpeace for its opposition to the development of genetically modified organisms (GMOs) in agriculture. The authors of the letter, particularly called attention to Greenpeace’s campaign against Golden Rice, a genetically engineered (GE) crop meant to address vitamin A deficiency. They claim Greenpeace and its supporters distorted the risks and benefits and impacts of the grain, and supported the destruction of approved field trials and research projects. The authors conclude: "opposition on the basis of emotions and dogmas that are contradicted by the data situation must stop."

The use of genetically modified plants in agriculture is a still controversial subject. Opponents of green genetic engineering such as the environmental organisation Greenpeace have boldly warned for many years about the unpredictable consequences of GE for the environment and people, while advocates, the majority of which are researchers, science academies and many church leaders, see it as an important tool to combat hunger in the world. In light of the forecast of the UN Food and Agriculture Organization FAO food shortages during the growing world population, a broad front has now formed of high-calibre researchers, who stand up for the use of genetically modified foods. The organisers of the letter are the biotech entrepreneur Richard Roberts and Nobel laureate Philip Sharp. The plea was pledged on the website supportprecisionagriculture.org

World food security with green gene technology

In order to secure the world's food, in an open letter 110 Nobel laureates in various disciplines as well as more than 2,700 scientists and citizens have called on governments to support the cultivation of genetically engineered plants in agriculture. Among the signatories of the call are German Nobel Laureate Harald zur Hausen, Erwin Neher and Christiane Nuesslein-Volhard, and the German chemical Nobel Prize Trio from 1988, Johann Deisenhofer, Robert Huber and Hartmut Michel. Noteworthy: the Austrian Nobel Prize for literature winner Elfriede Jelinek also appears in the list of the signatories.

Opening reception in the German research ministry

Joachim von Braun, Co-Chair of the Bioeconomy Council, says, "An increasingly biobased economy supports harmony between man and nature in a world that is heading towards a population of more than 9 billion and is affected by climate change and hunger." The German Government also attaches great importance to the bioeconomy. Chancellor Angela Merkel has assumed patronage of the event. During an evening reception in the German research ministry, the summit was officially opended on 24th November. On the occation of the conference, Johanna Wanka, Germany's Minister for Education and Research, emphasizes, "The National Research Strategy BioEconomy 2030 is an important part of the German Government's Sustainable Development Strategy. It supports innovations in the production and use of renewable resources. From an international perspective it helps drive forward sustainable economic and ecological solutions that lead to increased income and higher social standards. This helps to stabilize societies."

Greenpeace asked to rethink

The letter particularly points to the so-called “Golden Rice” project started 20 years ago – a patented strain of rice containing an artificially inserted gene, which boosts the level of vitamin A-rich beta-carotene. The authors vehemently criticise the attitude of the environmental organisation "Greenpeace" and other anti-GMO activists. They write the environmentalists have repeatedly denied incorrect facts and presented incorrect risks and have resisted innovation in agriculture. The Nobel laureates call for Greenpeace and its supporters to “recognise findings by regulatory authorities and competent scientific bodies” and to "abandon" their campaigns against GM crops and in particular the "golden rice”. The authors consider the opposition of green genetic engineering as a threat to global food security.

In an initial statement, Greenpeace has rejected the scientist’s accusation that it is blocking the introduction of genetically modified rice. “Corporations are overhyping ‘Golden’ rice to pave the way for global approval of other more profitable genetically engineered crops,” said Wilhelmina Pelegrina a campaigner for Greenpeace Southeast Asia. “This costly experiment has failed to produce results for the last 20 years and diverted attention from methods that already work. Rather than invest in this overpriced public relations exercise, we need to address malnutrition through a more diverse diet, equitable access to food and eco-agriculture.” The co-inventors of Golden Rice, the Freiburg plant researcher Peter Beyer, can also only shake his head: “These arguments are logical nonsense,” Beyer said the Süddeutsche Zeitung. “The activists are doing everything to ensure that the rice is not ready, and then they still complain about it.”

A tool against malnutrition

In the ranks of environmentalists, however, there are definitely advocates for the “golden rice”. In 2014, Greenpeace co-founder Patrick Moore started the campaign "AllowGoldenRiceNow" to break down the ideological front of the organisation against GMO rice. The "golden rice" is a genetically modified plant with a high content of beta-carotene (provitamin A), which gives the grains a golden yellow colour. According to estimates by the FAO, around 250 million people worldwide suffer from vitamin A deficiency. The consequences are blindness and infections. Children in Africa and Southeast Asia especially are affected and are dying from it. Therefore not only researchers, but also high-ranking church leaders therefore see the "golden rice" as an appropriate means to combat disease and death due to malnutrition. In 2009, the Vatican argued for the use of genetically modified foods to ensure food security for the world's population. At the time 40 experts signed the paper.

© bioökonomie.de/pg + bb

After the Leverkusen-based pharma giant increased its offer by two billion to $64 billion (€58 billion) in July, the US seed giant has now brought a new player into the race. As Bloomberg reported, Monsanto is negotiating with the Ludwigshafen chemical company BASF on a merger of the agrochemical divisions. Market experts however view the negotiation as a "poison pill" for Bayer in an attempt to make the purchase unattractive.

The news in May of Bayer’s planned takeover of Monsanto came as a surprise. After just a few weeks in office, the new boss of the Leverkusen-based drugs and life sciences giant, Werner Baumann, submitted a bid of over $62 million (€55 million) to buy the US seed giant. The offer of $122 per share was way over the share value of $107. Monsanto initially rejected the multi-billion dollar offer from Bayer, but appeared ready to talk. Shortly after, the US-company announced that the price was too low. Monsanto wants $7 billion more. 

But Bayer is holding onto its takeover bid firmly. Crop science is one of of Bayer’s core businesses. In 2015, it had sales of €10.4m and the unit is recording a steady growth.
The takeover would make Bayer the world’s largest agricultural and chemical company. If the merger went ahead, the seeds and traits platforms, crop protection, biologics and digital farming will be unified, according to Bayer. 

Monsanto’s bad reputation

Baumann's plans initially caused fear rather than enthusiasm among Bayer’s shareholders. Despite its economic success, Monsanto’s reputation is bad. The seed producer has long been criticised because of its controversial pesticide glyphosate. New discussions on the herbicide were fuelled further when the World Health Organisation classified the agent as “probably carcinogenic”. This in turn led to controversy over the extension of glyphosate approval in Europe. It was eventually extended initially for just 18 months.

BASF enters the takeover game

Another player has now entered the game – the Ludwigshafen-based chemical company BASF. As Bloomberg reports, Monsanto is said to have begun discussions with the German company about a possible merger of the two agricultural and chemical divisions. The deal with BASF could save Monsanto from Bayer’s attack. BASF and Monsanto have cooperated since 2007 in the development of biotechnologically modified crops. Analysts Kepler view the agribusiness between Monsanto and BASF as a logical combination because there are no overlaps between the two, and together they could offer customers a wider product range. The agricultural division of BASF (Agricultural Solutions) is the smallest unit, but has an above-average profitability. Last year, the division contributed eight percent of total revenues and 11.5 percent of BASF’S EBITDA profits. DZ Bank appraised the value to €17 billion – without a possible takeover premium.

Analysts say merger of BASF and Monsanto unlikely

According to Bloomberg, the talks between BASF and Monsanto are still at an early stage, and finance could prove to be a crucial point. Monsanto is apparently offering its own shares – which in turn are unattractive for BASF, as the shares’ market value has been inflated by the takeover bid. Analysts say a deal is therefore unlikely. In fact the step is more likely to be a seen as a poison pill for Bayer. Yet, this strategy does not appear successful. Bayer says it still firmly intends to complete the transaction. Analysts however, believe that the Leverkusen-based company will need to increase their offer – up to $130 or even $140 per share.

Experts, enthusiasts and inventors from over 70 cities from 37 countries took part in the international event to exchange ideas and numerous prototypes of the circular economy of tomorrow. Two years ago, the French/German founders of the association Circular came up with the idea behind the events. More than 900 participants came to this year’s OSCE Days in Berlin. The challenges of the circular economy were discussed in presentations, podium discussions, exhibitions and work groups. This year’s focus was on designer fashion from recycled textiles or the second life of wood waste. The Friedrich Ebert Foundation presented a study on the current state of the circular economy in Germany.

The founders of the Berlin association Circular have big plans. They imagine a world without any kind of waste. “We want to see the economy as circular, instead of a value chain, as it’s currently viewed,” explains Simon Lee, who studied maths in Berlin and now wants to set up an experimental field for the circular economy of the future. “We’re talking about using raw materials in the best way possible, and to also continue to utilise the product lifecycle.” With this idea in mind, Lee launched “Circular Economy Lab” (CRCL Lab) on the Berlin Agora collective premises.

Berlin brewery reborn as an experimental field for circular economy

A laboratory focused on the circular economy and sustainable solutions will be built on the site (1000 square metres) of the former Berliner Kindl brewery. The idea behind it sounds simple at first: creative minds want to put an end to the throwaway society by developing innovative products. Similar laboratories already exist in London and Utrecht, and now an open space for artists and entrepreneurs will be built in the German capital. The conversion of the Kindl brewery will be financed by the foundation Edith Maryon Foundation, among others. The foundation buys up properties worldwide for speculative building, and subsequently makes them available for social projects.

Small businesses will soon move into the basement of the Berlin property and there are already plans to build apartments on other floors in two years time. Until then, the initiators want to continue pushing forward the idea of a sustainable economy, and anchor their vision in the minds of fellow campaigners as much as possible. “The term circular economy is unfortunately associated with recycling,” says Lee. However, the focus of a circular economy is not just on waste recycling, but also on a fresh approach of product composition and product design. Open Source is also of great importance, says Lee. Ideally, there would be no more waste; the items are either re-built or broken down without residue into the biosphere.

OSCE Days: debating ideas for a circular economy

But how can companies earn money in a circular economy? What incentives have to be set up so that new business models can emerge? What waste streams can be utilised more efficiently today? Questions like these were at the centre of the Open Source Circular Economy Days, which took place in mid-June in more than 70 cities in 37 countries. It was only two years ago that the Berlin-based founders had the idea for a series of events with open workshops, in which anyone can take part. Due to the success of the first OSCE Days, the founders decided to repeat the event concept this year. From 9th to 13th June, the organisers working with Simon Lee welcomed more than 900 participants to the Kindl site in the Berlin district of Neukölln. District mayor Franziska Giffey (SPD) stressed in her opening speech, the waste issue is of great importance for the city, but also for each individual. “We have to ask ourselves what we want to do with the waste and how we want to live,” she said.

FES study on the circular economy:Germany still has a long way to go

Many other mini-seminars also took place over the four days. Whether edible natural cosmetics, sustainable financing strategies or Open Source business models, the variety of the topics discussed was large. The Friedrich Ebert Foundation (FES) used the event to present a current study on the state of the circular economy in Germany. It summarises the results of a FES technical discussion series, which was carried out with experts from politics, science, administration, business and trade unions on behalf of the FES’ working group for structural policy. According to the study, Germany is, in terms of its recycling rate, world champions. “However, there is still a long way to go before the circular economy is achieved,” according to Henning Wilts from the Wuppertal Institute for Climate, Environment and Energy, who led the study.

© biotechnologie.de/lg+as+sw

Bayer’s new partner, based in Redmond, Washington is involved in a wide range of space-based enterprises, including asteroid mining. With the new deal, Bayer intends to purchase data from Planetary Resources to create new agricultural products and improve existing ones. The new collaboration will be part of Bayer’s Digital Farming Initiative. Financial details were not disclosed.

By combining the technologies from the two companies, farmers will be able to time their irrigation systems more effectively, which will save water, receive planting date recommendations and re-planting advice as well as assess their soil’s water-holding capacity. Another project is a canopy temperature scout, which will optimise how crops are grown, saving both time and money for farmers. All projects undertaken by the collaboration will be part of Bayer’s Digital Farming Initiative (www.digitalfarming.bayer.com)

Powerful tools for crops worldwide

“The sensors from Planetary Resources can become a powerful tool that can provide a new level of information on crops anywhere in the world,” Liam Condon, member of the Board of Management of Bayer AG and head of the Crop Science Division, said in a statement. “The combination of Bayer’s scientific and agronomy expertise and Planetary Resources’ unique sensor capability will greatly improve our ability to deliver truly practical intelligence to growers anywhere on the planet.”

In a statement Chris Lewicki, Planetary Resources CEO said: “We are currently conducting airborne Research and Development campaigns over a variety of agricultural targets. ” He added, “Bayer is interested in supporting these activities with scientific and agronomic expertise in order to accelerate R&D, product validation and creation.”

Efficient and environmentally-friendly farming

Bayer aims to provide farmers all over the world with practical decision-making aids based on the precise evaluation and combination of diverse data such as weather data or topographic maps. Using these individualised recommendations, farmers will be able to optimise their business management and lower costs. In addition to leading to higher yields and therefore an improved income, it would also lead to more efficient and environmentally compatible deployment of resources.

Planetary Resources was founded to develop low-cost sensor platforms to better understand and manage humanity’s resources on Earth and in space. Its Earth observation system, named Ceres, is initially being deployed to collect a new level of crop intelligence for the global agricultural industry.

Monsanto stalls in deal talks

Besides strengthening its activities in digital farming via strategic investments such as its recent partnership with Planetary Resources, Bayer is currently in negotiations to buy Monsanto, the world's largest seed company. After turning down Bayer’s $62 billion acquisition bid “as incomplete and financially inadequate” in May, Monsanto said it was open to engaging in further negotiations.

The aim is to build up a world-leading position for furandicarboxylic acid (FDCA) and the polyethylenefuranoate (PEF) based on it. The recyclable PEF is tougher than conventional plastics, making it particularly suitable for food and beverage packaging films and plastic bottles. Building on Avantium’s YXY process for the production of FDCA, the JV will produce and market FDCA and also market the resulting PEF. Not least, it will construct a reference plant for the production of FDCA with an annual capacity of up to 50,000 metric tonnes per year at BASF’s Verbund site in Antwerp, Belgium.

“With the planned joint venture, we want to combine Avantium’s specific production technology and application know-how for FDCA and PEF with the strengths of BASF,” said Stefan Blank, President of BASF’s Intermediates division. “Partnering with the number one chemical company in the world provides us with access to the capabilities that are required to bring this technology to industrialisation,” added Tom van Aken, CEO of Avantium.

Bio-waste collaboration

Meanwhile, established bio-fuel player Deinove and fellow French biotech Arbiom have started a collaboration to demonstrate how their combined technologies can utilise non-food plant biomass previously considered waste. Deinove has already demonstrated that its technology is adaptable to forest residues, plant biomass that had been pretreated with the Arbiom tech. Now, further tests are to show which molecules can be produced by the fermentation.

“We are pleased that our technology also works on wood, opening the way to multiple applications for the valorisation of wood residues,” said Emmanuel Petiot, CEO of Deinove. “Our goal is to contribute to the development of a responsible bioeconomy. This collaboration with Deinove broadens the range of applications of our bio-refineries and the solutions we offer to industry,” added Gilles Amsallem, CEO of Arbiom. The stated goal of the two companies is to develop “a ‘carbon-free’ chemical industry”.

Earlier this year, Monsanto let Swiss agribusiness giant Syngenta slip through its hands. After several rejected takeover attempts, Syngenta eventually agreed to be acquired by Chinese chemical corporation ChemChina for €39bn. Now, Monsanto is apparently on the lookout for new expansion targets.

According to reports by Reuters, sources says that the US company has approached Bayer AG with an interest towards acquiring the German company’s crop science unit. A potential takeover would be worth more than US$30bn, the reports says.

According to reports by Reuters, sources says that the US company has approached Bayer AG with an interest towards acquiring the German company’s crop science unit. A potential takeover would be worth more than US$30bn, the reports says. According to the sources, Bayer does not currently plan to sell its crop science business and was merely looking to sound out Monsanto’s offers.

Neither Monsanto nor Bayer has yet commented on the reports.Crop science is one of of Bayer’s core businesses. In 2015, it had sales of €10.4m and the unit is recording a steady growth.

With the inauguration of the TUM Catalysis Research Center (CRC) at the Garching campus, the Technical University of Munich (TUM) wants to advance catalysis research. Scientists from different departments at the TUM will collaborate with industry partners at the CRC to research new ways of using the catalysts for a sustainable economy. The German Federal Ministry of Education and Research (BMBF) contributed €84 million to the total construction cost of the newly erected facility.

Catalysts such as salt in soup are indispensible in the chemical and food industry, and are key to the sustainable value chain, for example, in energy and resource conserving chemical conversion of materials. They can significantly contribute to better use of biogenic raw materials and improve the production, storage and conversion of energy. Many issues, such as how the catalytic use of natural gas (methane) can be used to produce more refined chemical intermediates, have so far not been solved. But this should change in the future.

With the construction of a new research building, the Technical University of Munich has taken the road to international catalysis research. On 9th May, the Research Campus Garching officially inaugurated the TUM Catalysis Research Center (CRC) – in close proximity to the building of the Department of Chemistry. “In future, the product range of our leading technology society will only be displayed when constructed using specific catalysts value products, reduced abundance products and pollutants are avoided," stresses TUM president, Wolfgang A. Hermann.

Research without borders

Scientists from five faculties as well as international cooperation partners will collaborate on research under one roof to meet the challenges of energy and resource saving production of chemical raw materials, fine chemicals and pharmaceutical products. The research will be conducted in state-of-the-art laboratories at the new complex. “In this kind of research, there are no longer borders anymore between the classic disciplines of engineering and science,” continues Hermann.

Parallel to the building of the new catalyst centre, the spectrum of professorships of bio-organic chemistry, computer-aided biocatalysts, industrial biocatalysts or industrial biocatalysts has been extended. Converging synergies effectively “With the new Catalysis Research Center, we have now created a site at which the existing synergies can converge and become effective,” stressed Stefan Müller, parliament state secretary for the BMBF at the official opening of the research centre.

The German Federal Research Ministry invested €29 million in the Garching research facility. The centre is also home to the strategic research alliance “Munich Catalysts” (MuniCat) in which TUM scientists work together with researchers from Clairant AG in the field of chemical catalysts. Furthermore, the CRC is also associated with the research activities of the Competence Center for Renewable Raw Materials in Straubling, where among other things, ethanol is produced bio-catalytically from agricultural products.

This gives the new TUM School of Bioengineering (MSB) a strong accent as an Integrative Research Center. Synthetic biotechnology integrates the methodological research approaches of biochemistry, bioinformatics, catalysis, and industrial or “white” biotechnology. The scientific groundwork was done by a research team headed by the chemist Prof. Thomas Brück, who, following an industrial career, received a call to the newly created Chair of Industrial Biocatalysis at TUM.The grant, through which the Werner Siemens Foundation has created this new focus, will be used to upgrade the laboratories in Garching, fund the new chair for Synthetic Biotechnology and create an associated student/teacher laboratory to attract particularly talented students.

State-of-the-art algae laboratory is already up and running

An existing highlight is the algae laboratory on the Ludwig-Bölkow Campus in Ottobrunn, which was recently opened as a worldwide novelty. It serves the technical cultivation of algae as an innovative, environmentally friendly raw material for aircraft fuels and industrial chemicals.

From greenhouse gas to insulin

“We dream of biological systems that produce insulin, for example, out of light and carbon dioxide,” explains Prof. Thomas Brück. “To this end we need to couple an energy-supplying photosynthetic unit with an insulin-producing system. Current research results indicate that this strategy is promising.”With the advanced methodologies of bioinformatics and simulating biological processes, making predictions is becoming evermore viable. Coupling feedback from computer simulations and experimental data acquisition accelerates the gain in knowledge and insight.

On this basis, a central task of synthetic biotechnology is to illuminate structure-function relationships in enzymatic systems. One goal of this research is the development of artificial enzymes with customised catalytic activity and artificial cell systems with optimally structured metabolic networks that enable the mass and energy-efficient production of chemical products.

A foundation for pioneering initiatives

The Werner Siemens Foundation fosters research and teaching in the fields of technology and natural sciences, education, training and the promotion of young talents. A prerequisite for a funding priority is that pioneering results have been previously achieved.“With this new centre for synthetic biotechnology, we are strengthening and bundling our competencies in catalyst research, white biotechnology and bioinformatics to form a hitherto unrivalled new branch of research,” says TUM President Wolfgang A. Hermann. “Synthetic biotechnology applies the understanding of biological processes to then targeted development of biological synthesis processes in industrial applications. This approach puts us ahead of our time.”

The research initiative coordinated by the Helmholtz Centre for Environmental Research (UFZ) aims at quantifying the sensitivity of ecosystem functions and their subsequent ecosystem services to environmental pressures in representative agriculturally dominated landscapes in Europe. The project receives funding within the BiodivERsA/FACCE initiative.

In order to advance the sustainability in long-term development of agro-ecosystems STACCATO ("SusTainable AgriCultural ChAnge Through ecological engineering and Optimal use of natural resources") plans to quantify the sensitivity of ecosystem functions and the generated services to environmental pressures in representative agriculturally dominated landscapes in Europe.

Research to mitigate impacts of climate and land use change

The research consortium, combining the expertise of scientists from various fields of study from several different European countries, will focus on investigating land use intensity at local as well as regional scale, the prevalent socio-economic backgrounds of farmers and stakeholders, and the potential impacts of future climate and land use change on biodiversity and the affiliated ecosystem functions and services.

Case studys in five different regions

During the kick-off meeting in Sofia, Bulgaria in April this year, the scientists agreed on methodologies to be used for data acquisition in five pre-selected case study areas in Romania, Bulgaria, Germany, Switzerland and Sweden. Landscapes will comprise annual crops, like winter wheat or oilseed rape, and semi-natural grasslands.

"In particular, we intend to investigate the interactions between annual crops and the surrounding landscapes including the sprawling urban areas, and the potentials of ecological engineering as a tool for eco-functional intensification," explains project coordinator Prof. Dr Josef Settele, Helmholtz-Centre for Environmental Research (UFZ).

"The overall objective is the elaboration and testing of generally applicable principles within the frame of ecological engineering, and to contribute to the loss of valuable soil and land for agricultural productivity," he adds.

New kid on the block

Ecological Engineering is an emerging discipline, concerned with design, monitoring and construction of agro-ecosystems in order to maximise ecosystem services through exploiting natural regulation mechanisms instead of suppressing them.As a core output, STACCATO aims at developing guidelines for optimising ecosystem functions and services provision and their stabilisation under future climate and land use change. Therefore, STACCATO will analyse the potential of ecological engineering as a tool for eco-functional intensification.

“There is not a single global bioeconomy. It's local by nature.” According to the Lodz Declaration of Bioregions, drafted at the European Bioeconomy Congress Lodz 2016 and published by stakeholders of the Central and Eastern Regions today, the bioeconomy must be first developed in local biocommunities, i.e. biovillages, biocities or bioregions. “Global problems such as limiting greenhouse gas emissions, protecting the climate and promoting healthy life, and the use of alternative energies can be dealt with effectively at the local level,” the stakeholders headed by Christian Patermann, the inventor of the knowledge-based bioeconomy, write in their manifesto. 

They propose three key actions to unite the principles of the circular economy, which is aimed at recycling natural resources and at preventing waste in production processes, and the bio-based economy, which delivers bio-based carbon-neutral, renewable, multifunctional products with novel properties.

1. Use the EU’s structural and innovation funds (ESIF) to implement a circular bio-economy at the local level through “sustainable bio-based growth, reduced impact on the environment, or local renewable energy supply”. 

2. Networking of regions in order to define joint strategies and actions, share best practises or perform joint research. For that purpose, a Central and Eastern European Bioregions Forum was established for knowledge transfer.

3. Create an integrated research effort that involves education of the civil society on basic prinicples of sustainability. “We cannot afford life styles, which are not sustainable in terms of overconsumption of energy, food, water and increased impact of environment,” according to the Lodz Declaration. 

In an Annex, the Lodz Declaration outlines concrete actions to be taken at the local level such as small agro-biorefineries or locally sourced value chains. “Mankind is facing serious challenges related to climate change, demographic explosion, shrinkage of raw materials, shortages of water, increasing pollution, and the decline of biodiversity,” the declaration suggests. “A significant part of these can be solved or limides by application of sustainable bioeconomy principles.” The Declaration shows the way how to integrate the circular economy and the bioeconomy and in this sense represents a blueprint for the EU’s review of the bioeconomy strategy and action plan.

A single gene regulates the length of female reproductive organs, thus helping avoid self-fertilisation. This discovery means that plant geneticists working with Michael Lenhard at the Institute for Biochemistry and Biology at the University of Potsdam have solved a centuries-old puzzle. Together with colleagues from England, Switzerland and Japan, the researchers wrote up their findings in the scientific journal eLife. The gene produces an enzyme that subtly alters the flower's hormonal balance.

Flower's reproductive organs separate

Female and male reproductive organs are found within the same flower of many plants. In many such cases, plants have evolved adaptations to prevent self-fertilisation. Thus they can avoid the negative effects of inbreeding. Instead, cross-pollination facilitated by insects is encouraged. "One of the most fascinating adaptations in the evolution of plants is heterostyly, i.e. different types of styles", says Michael Lenhard, "this means that female and male reproductive organs are separate from each other".

The flower's female reproductive organs are located in the pistil: Together, the styles and the stigma form the vertically protruding part responsible for pollination. The ovary and its ovules are located below them. The male reproductive organs form the stamens with their pollen. Individuals of species with differing style lengths can be divided into two classes. One form has a long female style with short male stamens, whereas in the other the lengths are reversed.

Even Darwin was fascinated

The importance of heterostyly was discovered by none other than Charles Darwin. It fascinated the father of evolutionary theory so much that he wrote extensively on the topic. Yet well over a century later the genetic and molecular basis for the phenomenon of heterostyly remained unknown.

The primrose variety primula veris supplied the researchers from Potsdam with the key to solving the mystery of the flower. The primrose has two forms, with long and short styles, respectively. The research team at the University of Potsdam compared all of the active genes in short-styled flowers with those in long-styled ones to identify which were responsible. That comparison led the researchers onto the trail of a gene present only in the short-styled form, where it is specifically active in the style. The gene is missing in the long-styled form altogether.

Enzyme releases growth hormone

The gene contains codes for an enzyme that releases a plant growth hormone. The hormone is a brassinosteroid that primarily promotes cell elongation. The difference in style lengths is a result of differences in cell elongation. To demonstrate that the candidate gene was indeed responsible for the difference in style lengths, the scientists experimented on a wide variety of primroses and closely related species that were unique in that they contained flowers with both long styles and long stamens.

As predicted, in all such cases the cryptically named gene CYP734A50 was either missing entirely, mutated and inactive, or could not be read. As predicted, compared with the longer styles, the short ones contained only modest quantities of the plant growth hormones. When the researchers deliberately added a few drops of the plant hormone to the flowers with short styles, the style length increased to that of the long-styled ones.

Possible use in hybrid breeding

The findings of the geneticists from Potsdam and Gatersleben are not only important for reconstructing the evolution of heterostyly. Their results may also find application in plant breeding, for example, with so-called hybrids. To increase crop yields, modern agriculture uses hybrid seeds that have to be created again and again by crossing genetically differing parents. If it were possible, as in the case of the primrose, to engineer two forms of agricultural crops that would breed with each other but not self-pollinate, it would greatly facilitate the production of hybrid seeds and as a result, be of direct benefit to farming.

With its 'high-tech strategy', the German government has paved the way for more sustainable economic activities. But how can the topic of sustainability be anchored more firmly in Germany whilst at the same time strengthening the country’s position as an innovation and technology hub? This is the question that the 'Sustainable Management' ('Nachhaltiges Wirtschaften') Expert Forum, part of the German government's Hightech Forum advisory group, has put at the top of its agenda. Their recommendations were presented to Research Minister Johanna Wanka and Environment Minister Barbara Hendricks during the Green Economy Conference held in early November in Berlin. Their ministries had provided support for the preparation of the paper.

Designing sustainability

During the conference, over 300 experts from business, science, society and politics discussed ways of orienting economic activities and innovation systems towards a sustainable form of management.

The experts determined five central recommendations for action: German research and innovation must be aligned with global UN sustainability goals. The area of sustainability must be made competitive and evaluable. The state must adopt an exemplary role in this area, both in its internal activities (sustainable orientation of the administration) and in its external influence (via control instruments). In addition, the topic should be disseminated at an early stage in educational establishments with a view to engendering competence regarding research and innovation. Also, social dialogue must be promoted, with the realms of science, economics, politics and civil society exchanging their views on equal terms.

Expediting biomass research

The 47-page paper includes implementation examples from the chemical and foodstuffs industries as well as the financial sector to show how this can be achieved. Thus the authors recommend that companies using non-renewable resources should always bear the entire value chain in mind. Furthermore, research is seen as a driver that increasingly enables fossil raw materials to be replaced by sustainably generated biomass. The research agenda also includes recommendations to tap new sources of carbon for industrial use as well as the oceans as new sources of food and raw materials.

"Sustainability does not represent a contradiction in respect of economic growth, but it can take the form of a competitive advantage," as Johanna Wanka emphasized at the congress in her opening speech. However, this would require powerful impulses from the research sector and a broadly based consensus in support of Green Economy. Wanka announced her intention to inaugurate a new scientific platform before the end of the year with the aim of enabling more sustainable innovation through closer cooperation. "This platform will help to forge new alliances and locate new partners for sustainable management," said the minister. The Ministry for Education and Research will be providing a total of 350 million euros for sustainability research by 2018.

Environment Minister Hendricks also pointed out in Berlin that structural change would only be possible in a concerted effort and that here, too, sustainability in financial dealings is necessary. "Sustainable investment options must come out of their niches and take over the mass market," demanded Hendricks.

It’s about 15% lighter than synthetics but 100% biodegradable. Built from the biologic Biosteel fiber, the adidas Futurecraft Biofabric prototype shoe represents the strongest fully natural material available, German sportswear company adidas said at the Biofabricate Conference in New York City. At the show, adidas announced a long-term partnership with German biotech company AmSilk, the developer of the biosteel production process.

“In a year of ground-breaking innovations from adidas, the announcement of our partnership with AmSilk – and the unveiling of the adidas Futurecraft Biofabric shoe – is another step in our commitment to redefining the sports industry,“ said James Carnes, VP Strategy Creation at adidas. AmSilk-CEO Jens Klein added: “The shoes are the first product worldwide with a high-performance material made of nature-identical silk biopolymers.”

Founded in 2008 as a spin-off from Technical University Munich, AmSilk in 2013 spun the world’s first yarn at lab-scale that copied the physical properties of spider silk. The silk protein itself had been produced recombinantly from fast-growing E. coli bacteria, freeze dried and solublised to spin an endless “multifilament”.