Aktuelle Veranstaltungen

Paris, 1981. The twelve-year-old Emmanuelle comes home from school, where she has been studying her favourite subject – biology. The girl says to her mother: “One day, I’m going to work at the Pasteur Institute!” A confident prediction, but Emmanuelle Charpentier did indeed go on to complete her doctoral thesis at the renowned Parisian research centre. However, the twelve-year-old Charpentier could not foresee that 30 years later, as a weathered biologist, she would be responsible for a minor revolution in her field.

Universal tool for DNA fragments

At this time, Charpentier is occupied with the study of bacterial protection mechanisms against viruses: This generally takes the form of the destruction of enemies by means of cutting out their genetic material. The big question is: Would it be possible to replicate this cutting mechanism? The researcher knows how to divide gene segments as well as how to remove, add or modify specific portions, a subject with which many of her colleagues are likewise occupied. To date, this kind of undertaking involved months of laborious and complex work. Charpentier’s ambition is first of all to fully understand the bacterial cutting mechanism and then translate this knowledge into a form of universal tool. This would enable genetic modifications to be carried out much faster than is currently possible. In turn, this could lead to new treatment options, including for human genetic diseases. However, there are issues to overcome: “We did indeed discover how the immune system works in bacteria and how we could use this for a new technology,” she says in retrospect, “but I missed the final component required for making the system work in cells with different functions and applications.”

Important publication in Science Magazine

Whilst based in the far north of Sweden, she eventually succeeded in decrypting this final component. In 2009, following positions in the USA and Austria, she moved her work to the University of Umea, and thereby into precisely the right environment for her basic research. As Charpentier recalls, the financial conditions were excellent and the academic focus was strongly oriented towards microbiology Moreover, she had the freedom to pursue high-risk and labour-intensive projects, including her research into gene-scissors. This hard work and serendipitous surroundings eventually provided some spectacular results: In 2012, the scientist published a complete guide for the cutting mechanism in the prestigious journal Science. Since then, scientists around the globe have been using the new system from the former straight-A student in Biology. Since the beginning of 2013, Charpentier has lived and worked in Braunschweig in Germany. At the local Helmholtz Centre for Infection Research, the 45-year-old heads the department ‘Regulation in Infection Biology’. The Frenchwoman considers the frequent moves and the adapting to new languages and cultures as simply part of the job. “This has made me more creative and has repeatedly given me fresh momentum,” she says. She thus recommends a stay abroad to all her students and postdocs, and reminds them to grasp any available opportunity. “Some people fail to recognise a lucky break, even when it’s staring them in the face. You have to make it happen and then jump right in.” Never leaving the country, viewing science as a nine-to-five job – this doesn’t cut it, in her opinion. “You can’t make a career out of that. You’re up against some serious competition, and that’s something you have to be clear about.”

A fan of ballet

At the Hannover Medical School, Charpentier – as one of just three women among 37 men – now holds one of the 40 highly endowed Humboldt Professorships. Surely this would be a case for a quota system? No, thinks Charpentier: “This kind of positive discrimination is more likely to hurt women. I would be worried that their research would be seen as second-rate.” However, she has observed that women have to perform better than male colleagues in the same positions. With her dark brown short curly hair and her open smile, the petite scientist looks much younger than her mid-40s – something that is possibly due to her earlier passion for ballet-dancing. She takes her daily commute by bike – twelve kilometres in total. “I have to get my energy out,” she says. “I have a great deal of it.” Sometimes she lets off steam at a rock concert. “It has happened that I found myself in a crowd of a thousands of kids. I have no problem with that at all!” she says, laughing. However, the demands of work means that there’s usually not much time left for dancing, not least because she recently co-founded a company of her own. CRISPR Therapeutics will utilise the new technology to develop therapies for life-threatening genetic diseases. “I want to accompany my baby for a little while yet,” says Emmanuelle Charpentier. “Right now, it’s all happening so fast that I’ve barely had time to take it in.”

Author: Maimona Id

The text originally was published in 2014 in the "Helmholtz Perspektiven" Magazine. 

Researchers from the Hohenstein Institute and the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have discovered a renewable alternative. With the help of water-resistant proteins, so-called hydrophobics, which are stored in the walls of fungi, the researchers hope to create a natural dirt and water blocker for textiles. The joint project has just begun.

Come rain, wind or snow, thanks to modern water and dirt-repellent textiles, we’re equipped to cope with all kinds of weather. But regardless of how popular the functional clothing is, the impregnation process is controversial. Perfluorianted and polyfluroinated chemicals (PFC) are used in the hydrophobization process. PFC consists of carbon chains of different lengths, in which the hydrogen atoms are completely (perfluorinated) or partially (polyfluorinated) replaced by fluorine atoms.

This extremely stable bond can only be dissolved under very high-energy expenditure and is virtually non-biodegradable. Researchers from the Hohenstein Institute in Bönnigheim and the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have now started a research project to develop a new kind of textile finishing with water and dirt-repellent properties that is harmless to humans and the environment.

Fungi proteins produced biotechnologically

The researchers are focusing on water-resistant (hydrophobe) proteins, so-called hydrophobins. These protein molecules occur naturally in the cell walls of fungi, where they have a water-repellent function. During the course of the project, the researchers hope to produce fungi proteins biologically and eventually apply them to textiles.

Proteins are given anchors

The hydrophobic proteins are provided with an "anchor " that can bind selectively and stably to the cellulose fibres. The principle of the anchor protein finishing has already been implemented in a feasibility study. Using a cellulose anchor, the researchers succeeded in binding a fluorescent green protein marker onto various textiles.

Sustainable functional clothing

The goal of the recently launched joint project is to find an economically and sustainably functionalization of textiles. The project is being driven by biotechnologists and textile scientists and assisted by a committee composed of various industry representatives from the textile and biotech industry. Water and dirt-repellent properties of textiles are not only important for outdoor activities, but are also important in the medical and automobile industries such as the protection of fibres against microbial decomposition.

© biooekonomie.de/bb + ml

Following the successful completion of another round of funding on the crowdfunding platform Startnext, the start-up GloW efficiency off-grid GmbH wants to offer the stove yaMbao that was originally designed for use in developing countries, to the German barbequing market. The barbeque gadget runs on uncarbonised, dry, and chunky biomass e.g. pellets, wood, or chopped wood. This is much more efficient and environmental friendly than using charcoal or fossil fuels. The outdoor cooker can be heated using garden remains such as plant cuttings and can therefore be used as a waste disposal.

In Germany, cooking over an open fire is seen as an adventurous activity that goes hand in hand with camping. Open fireplaces in closed rooms are commonplace in many countries in Asia, Africa and South America. Yet the health hazards of inhaling burnt wood have long been disregarded. Now a study has been published that for the first time shows a connection. The WHO estimates that annually around two million people die from the effects of smoke wood, half of them are children under five.

Biogas cooker uses garden waste

Two years ago start-up GloW efficiency off-grid GmbH from Lower Saxony developed an alternative stove, the “GloW yaMbao” which uses rough, dry biomass like wood, pellets, plant cuttings effectively, without harming people around the hotplate. Via crowdfunding platform Startnext, the start-up was able to raise money to advance the alternative stove. The GloW yaMbao is a so-called microwood gasification stove, which uses rough, dried biomass like wood or pellets for cooking

New barbeque for German gardens

The stove that was originally developed for developing countries has meanwhile been “tested, used and loved!” the developers report. The concept of clean cooking has apparently convinced garden and barbeque enthusiasts in Germany too. Now, the energy-saving cooker from Glow, which expands with a detachable grill plate, has conquered the domestic market. To do this, the young company secured another round of funding on the crowdfunding platform Startnext. Within two months, Glow were able to convince 82 small investors and raise around €8,200. With the money, they especially want to advance the sales of the stove in Germany.

Wood gas produces charcoal for fertilising

With the new biogas ovens the young company has not just developed a barbeque. As well as an oven, the device has a special composition in which biomass such as branches can be converted to gas at a high temperature. Water vapour and oxygen is released and part of the biomass is converted to gas. The result is a constant burning gas flame at the top of the stove that consumes little energy and reaches the required cooking or grilling temperature within five minutes.

In addition, the combustible wood gas produces charcoal, which is retained in the lower part and can be reused, or used as fertilizer for garden soils. The bottom line is that the Glow stove is more than just a new barbecue. It can also be used as a waste disposal for shrub and tree cuttings in the garden, making it a clean, healthy and effective alternative to controversial types of wood charcoal such as tropical timber.

And now, researchers from a wastewater treatment plant in Rotenburg an der Fulda have shown that algae can also clean waste water. The cleaning abilities of algae were demonstrated during the Hessian pilot project “phosphorus removal by microalgae”. The research project has been funded by the Hessian Ministry for the Environment, Climate Change, Agriculture and Consumer Protection together with the public utilities of Rotenburg since 2015 over a two-year period with a total of €620,000. Under the direction of a working group from the Competence Center of Energy and Environmental Technology (ZeuUS) at the Technical University of Central Hesse (THM), together with the Bremen-based company Phytolutions GmbH, the researchers have allowed microalgae to grow in a so-called photobioreactor whilst exposed to sunlight and carbon dioxide to be used at the municipal utilities in German city Rotenburg an der Fulda.

Filtering nutrients from wastewater

The aim of the project: using the microalgae, the amount of nutrients and valuable minerals that are pumped into the Fulda is reduced, to lower the concentration of phosphorus and nitrogen in the treatment plant’s wastewater, and to use the biomass produced from the algae for the production of biogas. That is to say, phosphate and nitrogen are created during the wastewater treatment plant processes. The algae then consume the phosphate and nitrogen, using it to grow, thus producing biomass, which afterwards can be separated.

Positive interim result

A year after the project began, the researchers took stock of the results, “The goal has definitely been achieved, which proves its suitability for everyday application,” announced project leader Ulf Theilen proudly. The microorganisms evidently fulfilled all of the experts’ expectations. Afterwards, the photobioreactors phosphates were barely detectable in the water samples. The nitrogen content was also said to be lower than expected.

Cutting down on chemicals with algae

The project managers at the municipal utilities in Rotenburg are confident that in the future by using algae, they can dispense with chemicals, so-called precipitants, which until now have been used for phosphorous removal in the wastewater treatment plants. The researcher's next step is to examine whether using algae plants on a large scale for wastewater treatment is economically promising. With the completion of the pilot project in 2017 – if all goes to plan, a guide on using the new algae-based wastewater treatments plant will be published.

An oil slick measuring 10,000 square metres endangered marine animals, sea birds and costal inhabitants. Until now, oil spills have been cleaned up by burning the oil, or using dispersion materials, which decompose the oil with the use of chemicals. These methods have been controversial for a long time because they equally pollute the environment. According to environmental scientists, the dispersant chemicals used can cause genetic mutation and cancer, adding to the toxicity of the spill. 

Water ferns' oil absorbing abilities

Scientists based at Karlsruhe Institute of Technology's Institute of Microstructure Technology (KIT) have now found an environmentally friendly solution to clean up oil-contaminated waters. Reporting their latest results in the journal Bioinspiration & Biomimetics, the team of scientists, led by material researcher Claudia Zeiger, said they were inspired by nature. In their study, the researchers focused on several water plants including four species of aquatic ferns – Salvinia – which are well known for their oil-absorbing abilities, making the leaves water repellent. “We already knew that the leaves of these plants repel water, but for the first time now, we have studied their capacity to absorb oil,” explains Zeiger. Together with colleagues from the University of Bonn, the team discovered the secret behind the oil absorption. The answer lies in the oil-binding properties of the hair-like microstructures called trichomes on the leaf surface.

Microhairs shaped like eggbeaters

Tiny little outgrowths called trichomes, which are similar to hairs and between 0,3 and 2,5 millimetres long, cover the surface of the Salvinia. When compared to different varieties of Salvinia, the scientists established that it was not the leaves with the longest hairs that absorbed the most oil, but the oil-binding ability is determined by the shape of the microhairs' ends. “From our results we now know that the shape of the hair ends is important in supporting the oil/air interface to ensure maximum oil absorption and retention capabilities," Zeiger stresses. The type of water fern that absorbed most of the oil is called Salvinia molesta. It is native to Brazil and its microhairs look like miniature eggbeaters and are joined together at the ends. Salvinia was able to absorb most of the oil. Furthermore, tests have shown that the water ferns are able to absorb oil in a matter of seconds.

The aquatic plants, which are native to the tropics and subtropics is now also increasingly found in European waters. For some, the plants have become a plague because they spread rapidly. This is another point why the Karlsruhe researchers are in favour of using the water plants as oil absorbers. They are not only fast and environmentally friendly, but also a cost-effective alternative to chemical cleaning of oil-contaminated waters. “The plants could be used for example in lakes where oil has accidentally entered the lake,” explains Zeiger.

Natural model for plastic films

In order to clean up oil spills, the Karlsruhe researchers now want to transfer their newly acquired knowledge on the Salvinia aquatic plants to a bio-inspired plastic film technology developed by them. The scientists have developed a synthetic version of these hairy surfaces and called it nanofur. The plastic nanofur is made up of microhairs on the film’s surface. It mimics the water-repellent and oil-absorbing effect of Salvinia to separate the oil and water.

Mit einer Geschäftsidee im Kopf ist der Mikrobiologe Ulrich Rabausch zur Innovationsakademie Biotechnologie gekommen. Dort hat er Partner gefunden, mit denen er das Wagnis Unternehmertum in die Realität umsetzt: Mit Hilfe einer Millionenförderung im Rahmen des GO-Bio-Wettbewerbs des Bundesministeriums für Bildung und Forschung.

Es ist nicht das erste Unternehmen, das Ulrich Rabausch in Angriff nimmt. Aber es ist das erste, dem der Mikrobiologe von der Universität Hamburg seine professionelle Karriere widmet. Es geht um  die Herstellung von gesundheitsfördernden, kosmetisch aktiven Inhaltsstoffen für die Kosmetikindustrie. „Das Unternehmerische fand ich schon immer spannend“, sagt Rabausch, der sich mit der Gründung von FrutAmazon bereits in seinen Studententagen am Aufbau einer Firma probiert hat. Dieses Unternehmen ist für ihn inzwischen Geschichte, doch das Interesse am Kaufmännischen blieb, und er ergänzte sein Mikrobiologie-Studium um das Nebenfach Betriebswirtschaftlehre. Als er im Sommer 2012 zufällig auf eine Annonce für die dritte „Innovationsakademie Biotechnologie“ stößt, ist er sofort begeistert: „Das Veranstaltungsformat klang vielversprechend, das wollte ich ausprobieren.“

Interdisziplinarität als Glücksfall

Damals bot die ehemalige Abfertigungshalle des Flughafen Tempelhof die Kulisse für die dritte Auflage der vom Bundesministerium für Bildung und Forschung (BMBF) ins Leben gerufenen Veranstaltungsreihe, die jedes Jahr zur Gründerwoche im Herbst stattfindet (mehr...). Als Teilnehmer kommen junge Naturwissenschaftler ebenso in Frage wie gestandene Unternehmer, Produktdesigner oder Marketingexperten. Gesucht werden Menschen mit Ideen und dem Interesse an der Gründung einer Firma. Für Rabausch erweist sich die Interdisziplinarität der Innovationsakademie als Glücksfall. „Im Laufe der zwei Tage habe ich Partner mit kaufmännischer Expertise sowie Branchenexperten gefunden, die mit mir gemeinsam den Weg der Firmengründung gehen wollten“, erinnert sich Rabausch, der damals eine Idee, die aus seiner Doktorarbeit resultierte, mit auf die Veranstaltung brachte. Ohne die Innovationsakademie, ohne die Unterstützung von Mitgründern hätte er diese nicht so entschlossen in Richtung Unternehmertum verfolgt, da ist er sich sicher. „Wir hatten vor Ort eine super Gemeinschaft, die sehr vielseitig zusammengesetzt war: Biowissenschaftler auf der einen Seite, aber auch alte Hasen mit Marktwissen und Leute aus dem Marketing.“ Im Rahmen des interaktiven Kreativitätsparcours der Innovationsakademie wurde die Geschäftsidee von allen Seiten unter die Lupe genommen. Er hatte es im Labor geschafft, Bakterienzellen so umzuprogrammieren, dass diese im Bioreaktor verschiedene Enzyme herstellen können, mit deren Hilfe Polyphenole maßgeschneidert mit unterschiedlichen Zuckerresten versehen werden können.

It is not the first company that Ulrich Rabausch had made a start on, but it is the first to which the microbiologist from the University of Hamburg has devoted his professional career. The company is occupied with the production of health-promoting, cosmetically active ingredients for the cosmetics industry. “I’ve always found the business side of things to be exciting,” says Rabausch, who already in his student days dipped his toe into business founding with the creation of the firm FrutAmazon. The company is now history, but the interest in commerce remained, leading him to supplement his studies in microbiology with a minor in Business Administration. When he chanced upon an ad for the third ‘Innovation Academy biotechnology’ in the summer of 2012, he was immediately convinced: “The format of the event sounded promising. I wanted to give it a try.”

The fluke of interdisciplinarity

The former departure hall of Berlin’s Tempelhof Airport served as the setting for the third edition of this series of events from the Federal Ministry of Education and Research (BMBF), which takes place every year as part of Entrepreneurship Week. Young and upcoming scientists as well as established entrepreneurs, product designers and marketing experts can all participate. The event is aimed in particular at people with ideas who are interested in starting a company. For Rabausch, the interdisciplinary nature of the Innovation Academy was something of a stroke of luck. “Over those two days I found partners with commercial expertise as well as industry experts who were willing to found a company together with me,” says Rabausch of the idea, which originally emerged in the course of his doctoral thesis. He is sure that had it not been for the Innovation Academy and for the support of co-founders, he would not have pursued this path of entrepreneurship quite as vigorously. “We came together as a very versatile community: Bioscientists alongside old hands with strong market knowledge, as well as people from marketing.”As part of the interactive creativity course from the Innovation Academy, the business idea was placed under the microscope from all angles. Back in the laboratory, Rabausch had succeeded in reprogramming bacteria cells so that they could produce various enzymes in the bioreactor. With the assistance of polyphenols, these could then be customised with various surface sugars.

Researchers at the Max-Plank Institute of Molecular Plant Physiology (MPI-MP) have now found a way to produce the natural compounds found in soya beans and grapes en mass to be used in medicine. The scientists used the tomato as a natural medicine factory. As the team reported in the journal Nature (2015, online publication), with the help of a genetic trick, the scientists succeeded in taking the gene from the other plants and inserting it into the tomatoes, which increased the gene hundredfold.

Many fruits and vegetables such as oranges, grapes, tomatoes and spinach contain natural compounds that protect against diseases or can even heal. Tomatoes can reduce the risk of a stroke and when cooked can protect against sunburn and strengthen the structure of the skin. The substance responsible for this is lycopene. However, the fruit only contains a small amount of lycopene, so that huge amounts of tomatoes need to be eaten to meet the daily requirements and achieve the beneficial effect.

Natural substances used as medicine

These relevant substances in plants are called secondary metabolites and it's the scientists’ goal at the Max-Plank Institute of Molecular Plant Physiology (MPI-MP) to apply them in medicines. The team around Alisdair Fernie from MPI-MP and Cathie Martins from the John Innes Centre in England have found a way to produce these natural substances in large quantities. And to do this they used the tomato plant. The plant can produce 500 tonnes of fruit per hectare making it one of the most productive crops, making it particularly suitable as a bio-factory for plant substances. 

But the researchers didn’t go for lycopene from the tomato plant. Instead, they chose the equally medically relevant substances resveratrol and genistein for their experiments. Genistein is a secondary metabolite found in soya beans that can prevent various types of cancers, such as breast cancer.

Integrated genetic switches

To stimulate the production of both substances in the tomatoes, the researchers have used a genetic trick: they planted the gene AtMYB12 from the model plant Arabidopsis thaliana in the tomatoes. AtMYB12 is responsible for the production of the AtMYB12 protein. The AtMYB12 encodes a protein that binds to essential genes of phytochemicals and boosts their production. “This protein works like a switch, which can turn the production of secondary plant substances on or off,” describes Alisdair Fernie, research group leader at the MPI MP in Potsdam.

Tomatoes as bio-factories

Afterwards, the selected nutrients were introduced together with other genes for the production of enzymes from soya beans and grapes in the tomatoes, which allow the production of the compounds resveratrol and genistein. The result: once equipped with the compounds (Phenylpropanoids), tomato plants are enriched with more than a hundred times the amount of resveratrol than grapes. This is also the case with genistein. The content of genistein in the tomatoes also exceeds that of soya products. The reason for the increase in the production of these substances is the introduction of a completely new metabolic pathway that has established itself in the tomato plants and kicks off the production of the natural substances. Using tomato plants as bio-factories has an economical advantage too. Instead of a laborious synthetic process in the laboratory, the natural substances can simply be extracted from the pressed juice of the tomato and the substrate used for the production of pharmaceuticals in medicine. The Max-Planck researchers are convinced that this technique could also be applied to other compounds to be used in medicine.

© biooekonomie.de/bb

Researchers from the Fraunhofer Institute for Biomedical Engineering IBMT Biomedical from the town of Sulzbach have discovered that alginate appears to be the ideal breeding ground for the propagation of pluripotent stem cells. The two types of algae are known as Lessonia trabeculata and Lessonia nigrescens and grow on Chile’s coasts. For the drug tests of the future, the pharma industry and medical research needs large quantities of pluripotent stem cells.

These stem cells have the potential to transform themselves into any kind of somatic cell, such as the cells of inner organs. After tests, the scientists at the Fraunhofer IBMT are convinced that the microorganisms supporting skeleton – the alginate – is the perfect breeding ground to cultivate stem cells in the laboratory. The IBMT scientists from Sulzbach developed the production process as well as the technology platform together with colleagues in Chile and the Great Britain.

In a laboratory operated by IBMT and Fraunhofer Chile at UCN University in Coquimbo, the seaweed is individually peeled, shredded, and completely dried. This is all done within 24 hours to prevent the material from becoming contaminated. The seaweed granulate is then exported to Germany, where IBMT scientists separate out the alginate in the institute’s cleanroom. After this process, it is available in liquid form and can be shaped into beads using a strong jet of air. The beads are now more stable in a barium bath, as barium tends to remain in the seaweed mass. “The trick is to make the material stable, but not too hard,” says Prof. Zimmermann, Managing Head of Fraunhofer IBMT. “Cells feel especially at home in elastic 3D environments such as are found inside the body. It’s precisely this environment that can be simulated perfectly using alginate,” he explains further.At the same time, the researchers introduce active ingredients into the alginate and release them in a controlled manner – monitoring them constantly. Examples of such active ingredients are substances that transform pluripotent stem cells into certain somatic cells. By mixing the two types of algae they could also determine the elasticity and size of the alginate.

Algae skeletons are the petri dish for stem cell cultivation

The alginate is coated with proteins and placed in a bioreactor in an environment of optimum temperature and CO2 and continuously stirred. The researchers concluded: each of the 200 micrometre beads performs the role of a Petri dish. The stem cells grow over the alginate in the containers in three to seven days, propagating as they do so. Because the alginate volumes could be increased without problems in the bioreactors, pluripotent stem cells can be grown in greater quantities and in smaller spaces.

Alginate can influence cell growth

“The stem cells grow better on our alginate – and particularly well in automated bioreactors. They differentiate better into the desired somatic cells than on the plastic substrates generally used today,” explains Prof. Zimmermann. Therefore, he is convinced that in the future the algae skeleton will not only function as a passive breeding ground but also will actively influence the growth of the stem cells. Currently, the cell propagation is validated in the laboratories of British pharmaceutical companies. British pharma companies are currently validating the process in their laboratories. The aim is to show that with the process stable pluripotent stem cells can be produced. “We have already been able to prove this for many individual stem cells at the institute,” says Zimmermann.

Das Meer hat Nicole Dubilier schon als Kind fasziniert. Dass ausgerechnet ein Wurm ihre wissenschaftliche Laufbahn schlagartig verändern würde, darüber kann die preisgekrönte Forscherin heute nur herzhaft lachen. Ihre Entdeckung der symbiotischen Dreierbeziehung aus einem marinen Wurm und zwei Bakterien wurde 2001 im Fachjournal Nature veröffentlicht - machte die Hamburgerin berühmt. Heute zählt sie zu den bedeutendsten Mikrobiologen weltweit und ist Direktorin am Max-Planck-Institut für marine Mikrobiologie in Bremen. Für ihre Forschung zu Symbiosen wurde Dubilier dieses Jahr mit dem renommierten Leibniz-Preis ausgezeichnet.

Nicole Dubilier ist Forscherin mit Leib und Seele. So oft es geht, tauscht die Mikrobiologin die Bequemlichkeit und Routine des Büroalltags gegen die Einschränkungen eines Lebens auf Hoher See. Angetrieben von der Neugier, die symbiotischen Lebensumstände von Würmern oder Muscheln vor Ort zu erforschen, nimmt die Hamburgerin die oft wochenlange Trennung von Mann und Sohn in Kauf. Selbst die lästige Seekrankheit kann sie nicht aufhalten. „Meine Forschungsobjekte im Feld zu sehen, ist für mich der besondere Reiz. Wenn ich sie anfassen und riechen kann, ist sofort eine andere Kreativität da“, sagt sie. Für ihre Erfolge in der Symbioseforschung wurde die Hanseatin mit amerikanischem Pass im März von der Deutschen Forschungsgemeinschaft (DFG) mit dem renommierten Gottfried-Wilhelm-Leibniz-Preis ausgezeichnet. Das Preisgeld von 2,5 Millionen Euro gibt Dubilier die Freiheit, weitere Forschungsfahrten zu finanzieren.

Ballett und Politik

Derweil hat Dubilier nie von einer Karriere als Wissenschaftlerin geträumt. Ursprünglich wollte sie klassische Tänzerin werden. Nach ihrem Umzug von New York nach Wiesbaden in den 70er Jahren, nahm die Tochter eines amerikanischen Vaters und einer deutschen Mutter Ballettunterricht und bestand sogar die Aufnahmeprüfung an der Stuttgarter Akademie. Doch die Schule abzubrechen, um Primaballerina zu werden, kam für die damals 15-Jährige nicht infrage. Dubilier hatte Spaß am Lernen und am Nachdenken. Nicht Biologie oder Chemie, sondern Politik und Geisteswissenschaften interessierten sie. Für die Gesprächsthemen der Tänzerinnen konnte sie sich nicht begeistern. „Es war eine Zeit des geistigen Aufwachens“, erinnert sich Dubilier. Ihre Mutter erkannte früh, dass die Talente der Tochter auf einem anderen Gebiet liegen. „Sie sagte, wenn Du in den Füßen das hättest, was Du im Kopf hast, dann wärst du ne prima Ballerina“. Damit waren die Weichen gestellt. In welche Richtung der Zug genau fahren sollte, war allerdings längst nicht klar. Als Kind schon liebte sie das Meer. In New York aufgewachsen, verbrachte die Familie jedes Jahr im Sommer zwei Monate auf einer Insel vor Long Island. „Ich habe Muscheln gern gegessen. Das war meine einzige Verbindung zu Meerestieren. Biologie fand ich völlig uninteressant“, gesteht die Mikrobiologin lachend. Ein Praktikum in der Forschungsstation auf der Insel Helgoland sollte ihre berufliche Zukunft entscheiden. „Da hab ich gemerkt, das ist es“.

Zusammenarbeiten im Team

Dubilier studierte in den 1980er Jahren an der Universität Hamburg Biologie und promovierte 1992 bei Olav Giere im Fach Marine Zoologie. Doktorvater Giere forschte damals an darmlosen Würmern, die er an der Küste Bermudas aufgespürt hatte. Die im sulfidreichen Sediment lebenden Tierchen zeigten eine ähnliche Symbiose wie der später von Dubilier vor Elba gefundene Ringelwurm namens Olavius algarvensis. Wie spannend Forschung sein kann, erfuhr Dubilier während ihrer dreijährigen Postdoc-Zeit bei Colleen Cavanaugh an der Harvard University. Cavanaugh war entscheidend an der Entdeckung der symbiontisch lebenden Tiefsee-Röhrenwürmer beteiligt und weckte in ihr die Faszination für diese unscheinbaren Meeresbewohner. „Das Grundprinzip einer Symbiose – zwei ganz unterschiedliche Organismen kommen und arbeiten zusammen und sind so noch stärker als allein – das hat mich fasziniert“, sagt Dubilier.

Even as a child, Nicole Dubilier was fascinated by the sea. Today, the award-winning researcher lets out a hearty laugh at the thought that a worm was responsible for bringing about an abrupt change in her academic career. Her discovery of the symbiotic three-way relationship between a marine worm and two kinds of bacteria was published in 2001 in Nature, and brought fame to the Hamburg-born scientist. Today, on top of a position as director of the Max Planck Institute for Marine Microbiology in Bremen, she counts among the world's leading microbiologists. In 2014, Dubilier was awarded the prestigious Leibniz Prize for her research into symbiosis.

Nicole Dubilier is a researcher with body and soul. As often as time permits, the microbiologist exchanges the comfort and routine of office life for the constraints of life on the high seas. Driven by a curiosity to explore the symbiotic lives of worms or mussels, the native of Hamburg leaves her husband and son behind for up to a week at a time – an aspect of her work that she admits is a sacrifice for her family. Even the annoyance of seasickness is no deterrent. “Seeing my research objects in their natural habitats holds a special appeal for me. If I can touch and smell them, I immediately reach another level of creativity,” she says.  In March, the resident of Hamburg  (with an American passport) was awarded the prestigious Gottfried Wilhelm Leibniz Prize from the German Research Foundation (DFG) for her success in symbiosis research. The prize money of €2.5 million gives Dubilier the freedom to fund further research trips.

Ballet and politics

Dubilier never dreamed of a career as a scientist. Originally, she wanted to be a classical dancer. After moving from New York to Wiesbaden in the 1970s, the daughter of an American father and a German mother took ballet lessons and even passed the entrance exam at the Stuttgart Academy. However, dropping out of school to become a prima ballerina was never an option for the then 15-year-old. Dubilier found joy in learning, and in reflection on her surroundings. Back then, this was not biology or chemistry, but in politics and the humanities. However, the young dancer could not take an interest in the predominant talking points of the time. “It was a time of spiritual awakening,” recalls Dubilier today. Her mother recognised early on that her daughter’s talents lay in a different field. “She said: if you had in your feet what you have in your mind, then you'd be a top-notch ballerina.” And with this, the course was set. Nevertheless, she remained unclear as to precisely which direction to take. Even as a child, she loved the sea. Born and raised in New York, the family spent two months of every summer on an island near the coast of Long Island. “I loved to eat mussels. That was my only connection to marine animals! I found biology completely uninteresting,” admits the microbiologist with a laugh. However, an internship at the research station on the island of Helgoland would prove to be decisive for her future career.  “I was then that I realised – this is it.”

Working together as a team

In the 1980s, Dubilier studied biology at the University of Hamburg, eventually receiving her doctorate in marine zoology in 1992 under the supervision of Olav Giere. At the time, Giere was conducting research into gutless worms that he had found on the coast of Bermuda. The creatures, which live in a sulphide-rich sediment, exhibited a similar symbiosis to the annelid Olavius algarvensis later found by Dubilier near the island of Elba. Dubilier learned just how exciting research can be during her three-year postdoctoral studies under the tutorship of Colleen Cavanaugh at Harvard University. Cavanaugh, who was instrumental in the discovery of the symbiotic deep-sea tubeworms, awakened in her student a fascination for the non-descript sea creatures. “I was fascinated by the basic principle of symbiosis, namely two very different organisms working together and becoming stronger as a result,” says Dubilier.

 

Jörg Riesmeier ist seit 2010 Geschäftsführer des Kölner Biotechnologie-Unternehmens Direvo IBT. Als Firmenlenker hat sich der 48-jährige Biochemiker allerdings schon viel früher beweisen können.  Nach Studium und Blitz-Promotion  („zwei Jahre und zehn Tage“) in Berlin zählte er 2006 zu den Mitgründern des Potsdamer Pflanzenbiotech-Start-ups Planttec und wurde dessen Geschäftsführer. Nach einem mehrjährigen Intermezzo als Fondsmanager in den USA hat er in den vergangenen Jahren die auf industrielle Biotechnologie spezialisierte Direvo auf neuen Kurs gebracht.

Mitte der 1990er Jahre. Jörg Riesmeier ist mit gerade einmal 32 Jahren zum Geschäftsführer des kleinen Start-ups Planttec gemacht worden. Am Anfang läuft nicht alles glatt und er ist „mehr als einmal“ über die Haltung seiner Geschäftspartner verärgert: „Nur weil die eine Visitenkarte mit dem Namen einer großen deutschen Firma präsentieren, haben sie die Weisheit nicht für sich gepachtet!“

Rasanter Aufstieg

Mit der Zeit verschafft sich Riesmeier Respekt – auch durch „Tacheles reden im Hinterzimmer“. Ein bisschen war der Niedersachse zu seinem Job gekommen wie die Jungfrau zum Kinde. Am Max-Planck-Institut (MPI) für molekulare Pflanzenphysiologie in Potsdam-Golm arbeitete das Team um Lothar Willmitzer auch an stark anwendungsbezogenen Projekten. Das passte nicht ins Konzept des Institutes. Abbruch oder Ausgründung? Biochemiker Riesmeier hatte bereits bei Willmitzer promoviert, folgte ihm mit 28 als Juniorgruppenleiter ans Institut für Genbiologische Forschung Berlin und arbeitete nach dessen Schließung am MPI an seiner Habilitation. Bei einer solchen Karriere im Eiltempo war es eigentlich nur logisch, dass ihm die Leitung der neu gegründeten Planttec GmbH angetragen wurde. Riesmeier traute sich die Aufgabe zu und baute die Potsdamer Firma an der Schnittstelle von grüner und weißer Biotechnologie auf. 2000 wurde Planttec von Agrevo übernommen, bald darauf in Aventis Cropscience umgetauft und schließlich 2002 an die Bayer AG verkauft. Während dieser Zeit erweiterte Riesmeier den Standort auf der Insel Hermannswerder auf 70 Mitarbeiter. Ende 2003 wurde dann die Rechtsform der Firma geändert - für Riesmeier gab es damit keine adäquate Aufgabe mehr. Bayer erhielt den Standort als Bayer Bioscience bis 2008, dann wurden die Projekte in die USA und Belgien überführt und das Gewächshaus in Potsdam verlassen.

Geniales kalifornisches Flair

Damals wurde aus einer Tendenz ein Fakt: „Die Grüne Gentechnik war in Deutschland gescheitert“, sagt Riesmeier rückblickend. Er selbst ging als Fondsmanager mit seiner Familie nach Kalifornien. Eine richtige Entscheidung: „Das Flair an der Westküste war genial. Und erst das Geschäftsklima – wie für mich gemacht!“ Vom Pioniergeist beflügelt, wartete die nächste Herausforderung in Boston. Von dort organisierte er den niederländischen Fonds LSP Bioventures. Das Geld kam von Syngenta, die sich so frühzeitig mit cleveren Ideen aus der industriellen Biotechnologie versorgen wollte. Mit Erfolg: Nach dem Anfangsinvestment - vermittelt durch Riesmeier  – kauften die Schweizer 2012 eine Firma „irgendwo im tiefen Hinterland Floridas“ für satte 113 Millionen US-Dollar. Zu diesem Zeitpunkt war Tausendsassa Riesmeier aber schon wieder zurück in Deutschland. Grund: Die weltweit äußerst angespannte Finanz-Situation und die damit verbundene Zurückhaltung von Geldgebern. „Ab 2008 wurde die Lage grässlich. Das Investorengeschäft hat überhaupt keinen Spaß mehr gemacht“Enzyme steuern den überwiegenden Teil der biochemischen Reaktionen. Wie das genau funktioniert, erklärt Jan Wolkenhauer in der neuen Kreidezeit.Quelle: biotechnologie.tv, resümiert Riesmeier.

Direvo komplett umgekrempelt

Wie so oft spielte ihm dann der Zufall in die Hände. Die Direvo Industrial Biotechnology (IBT) GmbH in Köln suchte gerade einen neuen Geschäftsführer. Nach dem Herauslösen der Sparte industrielle Biotechnologie aus der Direvo Biotech AG war der Pharma-Arm gerade in der Bayer AG aufgegangen. Ex-Chef Thomas von Rüden übernahm kurzzeitig das Ruder der Direvo IBT – und reaktivierte mit Riesmeier einen Kontakt aus früheren Tagen. Der kannte die Firma bereits: „Wir bei LSP hatten Direvo zwar beobachtet, konnten uns aber nicht zu einem Investment durchringen.“ Damit wusste der frisch gebackene Chef natürlich auch, dass ihn gehörig Arbeit in Köln erwartete: „Wir haben die Firma komplett umgekrempelt.“ Drei Jahre später steht sie mit 30 Angestellten und zwei Hauptprodukten gut da. Die BluZy-Enzyme werten als Futtermittel verwendete Abfälle der Bioethanolproduktion auf. Die BluCon-Plattform garantiert die Umwandlung organischer Abfälle in wirtschaftlich verwertbare Einzelbausteine wie Milchsäure.

Experimente in der Küche

Die Riesmeiers wohnen jetzt wieder in Berlin: „Nach der Zeit in den USA wollten wir der Kinder wegen wieder auf bekanntes Terrain.“ Wochentags nächtigt Riesmeier in einer kleinen Mietwohnung in Köln. Die Wochenenden verbringt der laut Eigenaussage „experimentierfreudige Hobbykoch“ mit seiner Frau und den sechs und elf Jahre alten Söhnen in Berlin-Zehlendorf. Obwohl sie noch nicht so recht wissen, was der Papa macht, wollen beide Erfinder werden.  

Autor: Martin Laqua

Since 2010, Jörg Riesmeier’s first responsibility has been as managing director of the Cologne-based biotech company Direvo IBT. However, the 48-year-old biochemist already established his credentials as a company head some years ago. In 2006, after finishing his degree studies and completing a lightning-fast doctorate in Berlin (“two years and ten days”), he was one of the founders of the Potsdam-based plant biotech start-up PlantTec, as well as its first managing director.

It’s the mid-1990s. At the tender age of 32, Jörg Riesmeier has just been made CEO of the small start-up PlantTec. Not everything goes smoothly in these early days, and “more than once” he is enraged by attitudes of his business partners: “Just because they could present a business card embossed with the name of a large German company, they thought they had a monopoly on wisdom!”

A rapid rise

Over time, gives Riesmeier managed to gain the respect of his peers, also as a result of “some plain talking outside of the meeting rooms.” There was an element of fortune in how the native of Lower Saxony arrived at his post. At the Max Planck Institute (MPI) for Molecular Plant Physiology in Potsdam-Golm, Lothar Willmitzer and his team (including Riesmeier) were working hard on strongly application-oriented projects. This did not fit into the general concept of the institute. So, should the work be binned or spun-off? The biochemist Riesmeier had already earned a doctorate under Willmitzer’s supervision, and at the age of 28 had followed him to the Institute of Gene-Biological Research in Berlin in the role as a junior group leader. When the institute closed down, he remained in the capital to work on his doctorate, this time at the MPI. With a career that was progressing at such a tempo, it seemed only logical that he would be offered the top position at the newly founded PlantTec GmbH. Riesmeier was happy to step up to the task, and began to build up the Potsdam-based company at the intersection between green and white biotechnology. In 2000, PlantTec was acquired by Agrevo, who soon renamed it Aventis CropScience, before selling it again to Bayer AG in 2002. During this time, Riesmeier expanded the company’s Hermannswerder Island location to 70 employees. The legal form of the company was changed at the end of 2003 – for Riesmeier, there was little left to do that offered him the necessary challenge. Bayer took over the location as Bayer Bioscience up to 2008, after which the projects were transferred to the US and Belgium, leaving the greenhouses in Potsdam empty.

Easy Californian flair

Back then, there was a tendency in the sector that was taken as fact: “Green genetic engineering was deemed to have failed in Germany,” says Riesmeier. During his role as fund manager, he even moved his family to California. It was the right decision: “There’s a fantastic vibe on the west coast. And the business climate – it was made for me!” Inspired by the pioneering spirit, the next challenge was already waiting in Boston, namely the organisation of the Dutch LSP BioVentures fund. The money came from Syngenta, which was hoping to be early to cash in on the clever ideas emerging from industrial biotechnology. It was a successful approach. After the initial investment – mediated by Riesmeier – in 2012 the Swiss Syngenta purchased a company “somewhere deep in the hinterland of Florida” for a whopping $113 million. By this time, the multi-talented Riesmeier was already back in Germany. The reason he gives for this is the extremely weak global financial situation and the consequent reluctance among the usual financial backers to part with their cash. “By 2008, the situation was dire. The investor business was no fun anymore,” remembers Riesmeier.

A revolution at Direvo

As is so often the case, there was a strong element of luck. Direvo Industrial Biotechnology (IBT) GmbH in Cologne was on the lookout for a new CEO. The pharmaceutical was flourishing at Bayer after the hiving-off of the industrial biotechnology division from Direvo Biotech AG.  Ex-head Thomas von Rüden briefly took over the helm at Direvo IBT and re-established contact with Riesmeier, who he knew from earlier days. Riesmeier was already familiar with the company: “We had had an eye on Direvo at LSP, but were not yet minded to make an investment.” Of course, the newly crowned head was also aware of this, and knew that there was work ahead of him in Cologne: “We totally revamped the company.” Three years later, the firm is doing very well and has 30 employees and two main products on its books. BluZy enzymes utilise as feed the waste produced by bioethanol production, while the BluCon platform guarantees the conversion of organic waste into economically viable individual building blocks such as lactic acid.

Weekend experiments only in the kitchen Berlin is now home once again for the Riesmeiers family. “After our stretch in the US we wanted to be on familiar territory again, above all for the kids.” During the week, Riesmeier stays in a small rented apartment in Cologne. The weekends are often spent, in his own words, as an “experimental amateur cook”. His testers are Mrs. Riesmeier and his six and eleven-year-old sons in Berlin-Zehlendorf. Although they can’t quite explain what it is that dad does during the week, they have both declared that they also want to be inventors when they grow up.

Author: Martin Laqua

Seit ihrer Entwicklung vor mehr als 30 Jahren hat sich die Polymerase-Kettenreaktion (PCR) als eine der wichtigsten Standardmethoden der Biotechnologie behauptet. Mit ihrer Hilfe lässen sich einzelne oder wenige DNA-Abschnitte gezielt vermehrt. Finanziert durch das Bundesministerium für Bildung und Forschung (BMBF) hat die Firma GNA Biosolutions in einem Projekt der Förderinitiative KMU-innovativ ein neues Turbo-Verfahren entwickelt: Der Schritt der DNA-Vervielfältigung wurde massiv beschleunigt, statt Stunden braucht die sogenannte Laser-PCR nur noch rund 15 Minuten.

Im Jahr 1983 schlug die Geburtstunde der Polymerasekettenreaktion. An dem Prinzip der Methode hat sich in den vergangenen Jahrzehnten kaum etwas geändert: Durch eine geschickte Temperaturführung lässt sich DNA mit bestimmten molekularen Werkzeugen vervielfältigen. „Obwohl eigentlich nur ein paar wenige DNA-Moleküle aufgeheizt werden sollen, musste man bisher immer die gesamte Reaktionsflüssigkeit erwärmen", sagt Joachim Stehr, Forschungschef der Biotech-Firma GNA Biosolutions GmbH. Auch wenn das Aufwärmen und Abkühlen in der klassischen PCR nur jeweils einige Sekunden dauert – weil der Schritt dutzende Male wiederholt wird, dauert das Verfahren insgesamt trotzdem recht lang.

Im Rahmen eines Projekts in der Fördermaßnahme KMU-innovativ hat das Unternehmen in Martinsried nun den PCR-Prozess massiv beschleunigt. Das BMBF hat die Entwicklung mit rund 300.000 Euro gefördert. „Wir halten die gesamte Flüssigkeit auf einer konstanten Temperatur. Mit kurzen Laserpulsen heizen wir Goldnanopartikel auf, an denen die zu vervielfältigenden DNA-Abschnitte hängen", beschreibt Stehr das von ihm mitentwickelte Laser-PCR-Verfahren. Das kurze – nur wenige Mikrosekunden dauernde – Aufheizen der Nanopartikel funktioniert etwa eine Million Mal schneller als das bisherige Heizen der gesamten Flüssigkeit. Binnen 15 Minuten kann so der gesamte Prozess abgeschlossen werden, heißt es von GNA Biosolutions.

Auf den ersten Blick ist die immergrüne Kreuzblättrige Wolfsmilch (Euphorbia lathyris) eher unscheinbar. Tatsächlich hat das Kraut es aber in sich: Die Samen enthalten 40-50 Prozent fettes Öl. Der reichlich fließende Milchsaft enthält zudem 8-12 Prozent Kohlenwasserstoffe als Terpene. Vor allem die darin enthaltenen energiereichen Triterpenoide haben das Interesse der Wissenschaft geweckt. Denn diese könnten Biokraftstoffen beigemengt werden. Weil die Pflanze auch auf trockenen und kargen Böden gedeiht, die sich kaum anderweitig nutzen lassen, würden wertvolle Ackerflächen entlastet. Mit Unterstützung des Bundesforschungsministerium hat ein internationales Wissenschaftlerteam unter Beteiligung deutscher Forscher um Hans-Peter Mock vom Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) die Pflanze nun genau unter die Lupe genommen. Das Ziel: Die Wildpflanzen besser verstehen und Optimierungspotenzial für den Einsatz als Energiepflanze ausloten.

Hierzulande ist Euphorbia bei Hobbygärtnern vor allem wegen ihrer fraktalen Wuchsform und der angeblichen Wirkung gegen Wühlmäuse beliebt. Für Hans-Peter-Mock von der Abteilung Physiologie und Zellbiologie des IPK in Gatersleben sind es hingegen vor allem ihre inneren Werte, die zählen. Das Wolfsmilchgewächs enthält reichlich Milchsaft mit einem hohen Anteil energiereicher Kohlenwasserstoffe, sogenannter Triterpenoide. Als Beimengung könnten sie Biokraftstoff einen zusätzlichen Energieschub verleihen. Bereits vor Jahrzehnten sind die Forscher auf die Pflanze aufmerksam geworden.

Wolfsmilchgewächs als Benzinpflanze

Der US-amerikanische Pflanzenforscher und Nobelpreisträger Melvin Calvin, Namensgeber des von ihm entdeckten Calvin-Stoffwechselzyklus in Pflanzen, schlug bereits Mitte der siebziger Jahre vor, Euphorbia als „Benzinpflanze" zu nutzen. Umgesetzt wurden diese Pläne damals aber nicht. Das könnte sich nun jedoch ändern. „Euophorbia gedeiht auch auf mageren Flächen. Sie findet sich zum Beispiel häufig in den Trockengebieten Spaniens", berichtet Mock, Leiter der Arbeitsgruppe Angewandte Biochemie am IPK. Zusammen mit anderen Forschern in Europa hat sein Team daher nun untersucht, ob sich das Wolfsmilchgewächs als Energiepflanze nutzen lässt. Neben den IPK-Forschern aus Gatersleben waren auch Wissenschaftler aus Spanien und Frankreich an dem Projekt beteiligt. Der Erdölkonzern Repsol und das spanische Unternehmen Synergia unterstützten die Arbeiten von der Industrie-Seite. Im Rahmen des Projekts „Produktion Energiereicher Triterpenoide in Euphorbia lathyris, einer potentiellen Nutzpflanze für Biokraftstoffe der dritten Generation" (Eulafuel) hat das Bundesforschungsministerium die Arbeiten am IPK als Teil der Forschungsinitiative Plant-KBBE II von 2010 bis 2013 mit rund 227.000 Euro gefördert.

At first glance, the evergreen Caper Spurge (Euphorbia lathyris) is a less-than-impressive plant. Nevertheless, this herb does indeed pack some punch: the seeds contain 40-50 percent fatty oil. This abundantly flowing ‘latex’ also contains 8-12 percent volatile unsaturated hydrocarbons known as terpenes. What as really attracting the interest of scientists is the terpenes that take the form of energy-rich ‘triterpenoids’. This is because they represent a possible additive for biofuels. Moreover, because the plant grows on dry and poor, the use of the plant for fuels would represent an opportunity to relieve pressure on valuable arable land. With the support of the German Federal Ministry of Research, an international team of scientists – including participation from German researchers headed by Hans-Peter Mock from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) – is now giving the plant its chance to shine. The objective is an improved understanding of the wild plant and an opportunity to explore its optimisation for use as an energy crop.

Euphorbia is popular in Germany above all because of its pretty fractal-like patterns and, for home gardeners, for its purported protective effect against voles. For Hans-Peter Mock at the Department of Physiology and Cell Biology at IPK Gatersleben, it is another aspect entirely that makes the plant an interesting subject: spurge contains an abundance of milky sap with a high proportion of energy-rich hydrocarbons, otherwise known as triterpenoids. As an admixture, these could well be put to use to give biofuels extra kick. The researcher first developed an interest in the plant some decades ago.

Caper spurge as gasoline plant

As far back as the mid-Seventies, the American plant scientist and Nobel Prize winner Melvin Calvin (discoverer of the Calvin cycle in the plant metabolism), suggested using Euphorbia as ‘gasoline plant’. Although these plans were never implemented, there has been revived interest in the subject. “Euophorbia thrives on lean soils, and can be found, for example, in Spain’s arid regions,” explains Mock, head of the Applied Biochemistry working group at the IPK. Working together with other researchers in Spain and France, his team is now investigating whether the spurge family can be put to use as an energy crop. The oil corporation Repsol and Spanish firm Synergia are providing support on the industrial side. The Federal Ministry of Research is supporting the work at the IPK from 2010 to 2013 with around 227,000 euros as part of the research initiative Plant-KBBE II and within the framework of the project Eulafuel, which stands for ‘Production of energy-rich triterpenoids in Euphorbia lathyris, a potential crop for third-generation biofuels’.

Numerous defence substances in the latex

Using a wide range of molecular, biochemical and histological techniques, the scientists having been zoning in on the plant to gain an understanding of the composition and formation of the so-called latex. There has been a clear division of labour from the outset: the French researchers at the Institute of Plant Molecular Biology of the National Centre for Scientific Research (CNRS) and the University of Strasbourg have been concentrating on the metabolites in the Euphorbia. The scientists in Barcelona and Valencia are focused on the RNA-related aspects. A view into the transcriptome reveals the state of activation of genes in a plant at any one time. The IPK team, on the other hand, is studying the protein composition of the latex. “We have gathered a great deal of information,” says plant researcher Mock. “It has been surprising to see how many different irritant or allergy-causing substances are present in the latex.” Thereby, the scientists have been subjecting the liquid to a barrage of analytical techniques. “Firstly, we had to remove commonplace proteins in order to analyse the rarer molecules,” reports Mock. The latex contains specific substances that can quickly cause proteins to malfunction and thus detract from analyses. Here, the trick of the scientists was to add special enzymes that disassemble the proteins into numerous fragments, the peptides. This stops the malfunctioning and enables deeper analysis.

Commercial implementation feasible in principle

The spurge plants also use the latex as a defence against enemies. Components such as ingenol and ingenol esters can cause irritation of the skin, so much so that, at harvesting time, gloves are used to handle the plant, to avoid allergic reactions. But what could at first seem to preclude commercial use may indeed to be something beneficial. The idea of the researchers is to create plants in which only a comparatively small quantity of defence substances is produced, and to use the surplus energy to form greater quantities of triterpenoids. In view the evidence gathered in the course of the project to date, the participating companies Repsol and Synergia in Spain consider commercial implementation to be possible. Repsol, one of the ten largest private oil companies in the world, has been systematically researching renewable resources since 2010. In that year they founded the ‘New Energy Business Unit’, which is studying the use of Jatropha oil, among other subjects. Much like Euphorbia, Jatropha is another plant that can withstand particularly austere conditions. Nevertheless, even in the best case it will take some years until the Caper Spurge is fit for industrial application on a large scale. The team at the IPK has already profited from the work, says Mock: “Together with a Polish partner, we are studying the tetterwort plant for ingredients that can be put to medical use. Here, the experiences gained with Euphorbia have been extremely useful.”

Autor: Bernd Kaltwasser

Enzyme sind in einigen Industriebranchen die heimlichen Stars: So sind die Biokatalysatoren Schlüsselkomponenten heutiger Waschmittel. Das Potenzial von Enzymen noch weiter erschließen will die von dem Monheimer Biotech-Unternehmen Evocatal koordinierte strategische Allianz „Funktionalisierung von Polymeren (FuPol)". Hier sollen innovative Produkte für die Textilwirtschaft sowie für die Bauchemie entstehen. Neu entdeckte Enzyme sollen dafür eingesetzt werden, Naturstoffe oder synthetische Fasern gezielt zu verändern und mit nützlichen Eigenschaften auszustatten. Die neun Partner aus Industrie und Hochschulforschung bringen bis 2018 insgesamt 8 Millionen Euro auf, die Hälfte davon steuert das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der „Innovationsinitiative industrielle Biotechnologie" bei.

Polymere mithilfe von geeigneten Enzymen veredeln und so die Basis für innovative Produkte schaffen – das ist das Ziel der FuPol-Allianz. Sie ging 2013 an den Start und führt insgesamt neun Partner aus Industrie und Akademie zusammen. Koordinator des Netzwerks ist Christian Leggewie, Forschungschef beim Enzymspezialisten Evocatal. Im Fokus der FuPol-Allianz stehen zwei Module: „Zum einen wollen wir natürliche Polymere wie Lignin oder Cellulose für die Bauchemie nutzbar machen," erläutert Leggewie, „zum anderen synthetische Polymere für die Textilwirtschaft aufwerten." Die Werkzeuge dazu sind in beiden Fällen Enzyme – die Multitalente unter den Eiweißmolekülen. Die Natur hat bereits eine gewaltige Vielfalt an Enzymen hervorgebracht. Die Biotechnologen durchforsten Bioarchive nach Molekülen mit den gewünschten Fähigkeiten. Mithilfe moderner Enzymtechnologien versuchen sie zudem, ganz neuartige Biokatalysatoren zu entwickeln.

This is hoped to assist in the development of innovative products for the textile industry and for construction chemistry. Thereby, newly discovered enzymes will be employed to targetedly modify natural products or synthetic fibres and to equip them with useful properties. To pursue these goals, the nine partners from industry and higher-education research have a total of €8 million up to 2018, half of which is managed by the Federal Ministry of Education and Research (BMBF) in the context of  ‘Innovation Initiative Industrial Biotechnology’.

Refining polymers using specially made enzymes and thereby laying the foundations for innovative products – this is the objective of the alliance FuPol. The initiative began in 2013 and comprises a total of nine partners from industry and academia. The coordinator of the network is Christian Leggewie, head of research at the enzyme specialists Evocatal. Two modules stand at the focus of the FuPol alliance: “Firstly, we want to make natural polymers such as lignin or cellulose usable for the construction chemistry,” says Leggewie, “and secondly we want to enhance synthetic polymers for the textile industry.” In both cases, the tools for these tasks are enzymes – the most multi-talented of all the protein molecules. Nature has already given us a huge variety of enzymes, and today, biotechnologists are scouring the bioarchives for the right molecules with the right skills. Aided by modern enzyme technology, they are also working to develop entirely new biocatalysts.

Enzymes for nibbling on nodules

Enzymes with new capabilities are in great demand in the textile and detergent industries, among other sectors. Washing powders already contain celluloses for cleaning cotton fabrics. “They nibble away at microfibres or the knot-like nodules that protrude from the textile, and in this way prevent the clothes from becoming rough and grey,” says Leggewie. The fast-growing market of synthetic textile fibres, which in 2011 saw production of around 36 million tons of PET fibres worldwide, faces a different challenge. After repeated washing, nodules will form in the synthetic fabrics – a problem for which no remedy has been found to date.“ We want to find new enzymes to tackle this issue,” stresses Leggewie. Together with academic partners from the University of Leipzig and the DWI at RWTH Aachen and RWTH Aachen, the Evocatal biotechnologists are searching through the esterase class of enzymes to find those that may be able to cope with the artificial substrate PET fibres and cleave apart the unwanted nodules. “We have a shortlist of around 30 enzymes, and these are now being put through an extensive testing phase,” says Leggewie. The best of these bio-based detergents are now being lined up for further development – work that is taking place together with the detergent manufacturer Henkel, where the enzymes must pass the ultimate washing machine tests. Other enzymes in the FuPol Alliance are aimed at modifying synthetic fibres in such a way that they become more adherant for dyes and paints.

In a further module, the partners in the strategic alliance are busy working on natural polymers, i.e. complex molecules such as lignin and cellulose that are derived from renewable resources. In the example of lignin, the associated pulp production produces about 50 million tonnes of mechanical pulp every year – waste that is burned. The idea now is for the alliance to use enzymes to convert lignin into a concrete admixture. They are essential for modern civil engineering and help to save water, to increase the quality of the concrete and to ensure that the material dries quicker. However, most additives to concrete are petrochemical-based. “Concrete additives from natural substances can save water, release less CO2 and bring savings in energy,” says Leggewie. Here again, it is enzymes that are set to make the difference in this project: A team of researchers headed by Wolfgang Streit at the University of Hamburg have searched through environmental samples for interesting biocatalysts, with some success. “We’re also going through the test phases to pick out the best candidates,” says Leggewie.

Feasibility studies

Here, practical testing will also demonstrate the real-world actual qualities of the new bio-based concrete additives. The Swiss company SIKA Bauchemi, which has also worked with Evocatal on earlier projects, is responsible for this process. EMPA, which is likewise based in Switzerland, will work in close cooperation with industrial partners to develop a customised process for modifying the lignin. Ideally, the partners in the FuPol alliance will demonstrate the feasibility of all sub-projects by 2016. The following two years will then see the transfer to industrial scale of the production processes for bio-based tools and products.

Author: Philipp Graf

Nachwachsende Rohstoffe sind in der Industrie zunehmend als Alternative zu fossilen Rohstoffen gefragt. Als Bausteine pflanzlicher Biomasse werden bisher vor allem Kohlenhydrate, Fette und Öle genutzt. Doch Pflanzen stecken auch voller Proteine. Deren Potenzial stärker industriell zu erschließen, ist das Ziel der strategischen Allianz „Technofunktionelle Proteine – TeFuProt". 14 Projektpartner aus Wirtschaft und Wissenschaft arbeiten unter Koordination der Berliner ANiMOX GmbH daran, Proteine aus Resten der Rapsölproduktion zu gewinnen. Die Eiweiße sollen so optimiert werden, dass sie als Grund- oder Zusatzstoffe in Farben, Reinigungsmitteln, Bau- oder Schmierstoffen eingesetzt werden können. Für die kommenden sechs Jahre bringen die Akteure insgesamt 9 Millionen Euro auf, die Hälfte steuert das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der „Innovationsinitiative industrielle Biotechnologie" bei.

„Proteine gehören wie Cellulose oder Lignin zu den Bestandteilen nachwachsender Rohstoffe, aber ihr Potenzial für die chemische Industrie wird bisher kaum genutzt", sagt Axel Höhling. Er ist Geschäftsführer der Berliner ANiMOX GmbH und federführender Koordinator der TeFuProt-Allianz. Dabei waren Proteine noch zu Beginn des 20. Jahrhunderts ein Ausgangsgrundstoff der Kunststoffchemie gewesen – das für Knöpfe, Schirmgriffe oder Radiogehäuse genutzte Galalith wurde einst aus dem Milchprotein Casein hergestellt. Mit dem Erdölboom geriet der Stoff jedoch ins Hintertreffen und weitgehend in Vergessenheit. „Wir wollen den vernachlässigten Rohstoff Protein aus nachwachsenden Quellen wieder für technische Anwendungen erschließen", sagt Höhling.

Auch in deutschen Gärten könnten Gartenreste bald zum Grillen verwendet werden. Nach dem erfolgreichen Abschluss einer weiteren Finanzierungsrunde auf der Crowdfunding-Plattform Startnext will das Start-up GloW efficiency off-grid GmbH den ursprünglich für den Einsatz in Entwicklungsländern entwickelten Mikroholzvergaser GloW yaMbao auf dem heimischen Grillmarkt anbieten. Der Freiluftherd kann mit Gartenresten wie  Strauchschnitt angeheizt und somit auch zur Abfallbeseitigung verwendet werden.

Kochen über dem offenen Feuer wird hierzulande als Aberteuer beim Zelten zelebriert. In Ländern wie  Asien, Afrika und Südamerika sind offene Feuerstellen in geschlossenen Räumen vielerorts Alltag. Lange wurden die gesundheitlichen Gefahren durch das Einatmen von verbranntem Holz missachtet. Inzwischen gibt es erste Studien die einen Zusammenhang belegen. Nach Schätzungen der WHO sterben jährlich etwa zwei Millionen Menschen an den Folgen von Holzrauch, die Hälfte davon Kinder unter fünf Jahren.

Biogasherd nutzt Gartenabfälle

Mit GloW yaMbao hat das niedersächsische Start-up GloW efficiency off-grid GmbH vor zwei Jahren einen alternativen Kochherd entwickelt, der grobe, trockene Biomasse wie Holz, Pellets, Strauchschnitt effektiv nutzt, ohne Menschen in der Umgebung der Kochstelle zu schädigen. Über die Crowdfundingplattform Startnext konnte das Start-up 2014 Geld einsammeln und die Entwicklung des alternativen Herds vorantreiben. Bei GloW yaMbao handelt es sich um einen sogenannter Mikroholzvergaser, der grobe, getrocknete Biomasse wie Holz oder Pellets zum Kochen nutzt.

Neuer Grill für heimische Gärten

Der ursprünglich für Entwicklungsländer konstruierte Herd wird inzwischen in 15 Ländern weltweit „getestet, ausprobiert, genutzt und geliebt!“, wie die Entwickler berichten. Das Konzept des sauberen Kochens hat offenbar auch hierzulande Garten- und Grillfreunde überzeugt. Nun soll der Energiesparherd von Glow, der erweitert um eine abnehmbare Grillplatte, auch den heimischen Markt erobern. Dafür hat sich das Jungunternehmen über eine neue Crowdfunding-Runde über die Plattform Startnext Kapital gesichert. Innerhalb von zwei Monaten konnte Glow 82 Klein-Investoren überzeugen und so rund 8.200 Euro einsammeln. Mit dem Geld soll vor allem der Vertrieb in Deutschland vorangebracht werden.

Holzgas erzeugt Holzkohle zum Düngen

Mit dem neuen Biogasofen haben die Jungunternehmen nicht nur einen neuen Grill entwickelt. Das Gerät besteht neben einem Herd aus einem speziellen Aufsatz, in dem Biomasse wie Astholz bei hoher Temperatur vergast wird. Dabei treten Wasserdampf und Sauerstoff aus und teile der Biomasse werden zu Gas verwandelt. So entsteht im oberen Teil eine konstant brennende Gasflamme, die wenig Energie verbraucht und innerhalb von fünf Minuten die erforderliche Koch- oder Grilltemperatur erreicht. Daneben erzeugt das brennbare Holzgas Holzkohle, die im unteren Teil erhalten bleibt, wiederverwendet oder später als Dünger für Gartenböden genutzt werden kann. Fazit:  Glow-Herd ist mehr als nur ein neuer Gartengrill. Er kann auch zur Abfallbeseitigung von Strauch- oder Baumschnitt im Garten genutzt und so eine saubere, gesunde und effektive Alternative zu umstrittenen Holzkohlsorten wie aus Tropenholz.

bb